тра. Данная методика обсуждалась выше в параграфе об очистке водорода монооксида углерода СО. Хотя на первый взгляд этот способ получения во рода может показаться привлекательным, однако его практическая реализа" достаточно сложна.

Представим себе такой эксперимент. В цилиндрическом сосуде под п шнем находится 1 кмоль чистого водяного пара. Вес поршня создает в cocj постоянное давление, равное 1 атм. Пар в сосуде нагревают до температ> 3000 К. Указанные значения давления и температуры были выбраны произвс. но в качестве примера.

Если в сосуде находятся только молекулы Н20, то количество свобол энергии системы можно определить с помошью соответствующих таблиц TeD динамических свойств воды и водяного пара Однако на самом деле по край мере часть молекул водяного пара подвергается разложению на составляг ее химические элементы, т. е. водород и кислород:

поэтому полученная смесь, содержащая молекулы Н20 , Н2 и 02, будет хар-«. теризоваться другим значением свободной энергии.

Если бы все молекулы водяного пара диссоциировали, то в сосуде оказалась газовая смесь, содержащая 1 кмоль водорода и 0,5 кмоля кислорода. Количе^ свободной энергии этой газовой смеси при тех же значениях давления (1 а и температуры (3000 К) оказывается больше количества свободной энер чистого водяного пара. Отметим, что 1 кмоль водяного пара был преобразован 1 кмоль водорода и 0,5 кмоля кислорода, т. е. общее количество вещества те: составляет А"оГ)||(=1,5 кмоля. Таким образом, парциальное давление водорода б> равно 1/1,5 атм, а парциальное давление кислорода - 0.5/1,5 атм.

При любом реалистичном значении температуры диссоциация водяного п будет неполной. Обозначим долю продиссоциировавших молекул перемен F. Тогда количество водяного пара (кмоль), который не подвергся разложен будет равно (1 - F) (считаем, что в сосуде находился 1 кмоль водяного пара). К личество образовавшегося водорода (кмоль) будет равно F, а кислорода - F Получившаяся смесь будет имеет состав

(l-F)n20 + FH2 + ^F02.

Общее количество газовой смеси (кмоль)

Рис. 8.8. Зависимость свободной энергии смеси водяного пара, водорода и кислорода от мольной доли продиссоциировавшего водяного пара

Свободная энергия компонента смеси зависит от давления в соответствии соотношением

8i = 8i +RTnp(, (41)

гле g - - свободная энергия /-го компонента смеси в расчете на 1 киломоль ftp и давлении 1 атм (см. «Зависимость свободной энергии от температуры в гл. 7).

Зависимость свободной энергии смеси от F, определяемая уравнением (42 показана на рис. 8.8. Как видно из рисунка, свободная энергия смеси водя - го пара, кислорода и водорода при температуре 3000 К и давлении 1 атм го: минимум, если доля продиссоциировавших молекул водяного пара состав

14,8 %. В этой точке скорость обратной реакции н, + - СУ, -> Н-,0 равна ско

1 2 сти прямой реакции Н20 -» Н2 + - 02 , т. е. устанавливается равновесие.

Чтобы определить точку равновесия, необходимо найти значение F при

тором СП11Х имеет минимум.

d Gmjy -$ -$ 1 -$

-^ = - Ян2о + Яи2 + 2^о2 +

Sh2o “ Sn2 ~ 2 go2

Константа равновесия Кр зависит от температуры и от стехиометрических коэффициентов в уравнении химической реакции. Значение Кр для реакции

Н-0 -» Н2 + ^02 отличается от значения для реакции 2Н20 -» 2Н2 + 02 . При зтом константа равновесия не зависит от давления. Действительно, если обра­титься к формуле (48), то можно увидеть, что значения свободной энергии g* определены при давлении 1 атм и не зависят от давления в системе. Более того, г»ли водяной пар содержит примесь инертного газа, например аргона, то это тткже не изменит значения константы равновесия, так как значение g"Ar равно тлю1*.

Соотношение между константой равновесия Кр и долей продиссоциировав - гго водяного пара /’может быть получено, если выразить парциальные давле­ния компонентов смеси в функции от F, как это было сделано в формулах (38), 39) и (40). Отметим, что эти формулы справедливы только для частного случая, гда полное давление равно 1 атм. В общем случае, когда газовая смесь нахо - іся при некотором произвольном давлении р, парциальные давления можно ссчитать по следующим соотношениям:

Как следует из приведенной выше информации, прямое термическое ра жение воды возможно только при очень высокой температуре. Как показано рис. 8.9, при температуре плавления палладия (1825 К) при атмосферном. лении только незначительная доля водяного пара подвергается диссоциа Это означает, что парциальное давление водорода, полученного термичсс- разложением воды, будет слишком низким для использования в практичес задачах.

Повышение давления водяного пара не исправит ситуацию, так как при резко уменьшается степень диссоциации (рис. 8.10).

Определение константы равновесия можно распространить на случай более сложных реакций. Так, например, для реакции

Величина -246 МДж/кмоль - это значение энергии образования воды, усре ненное в интервале температуры от нуля до 3000 К. Приведенное соотноше является еще одним примером уравнения Больцмана.

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550 o C. Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен. 3 ил.

Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом. Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода. Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500 o C, описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977). Этот способ сложен, энергоемок и трудноосуществим. Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981). К недостаткам этого способа относятся: - невозможность получения водорода в больших количествах; - энергоемкость; - сложность устройства и использование дорогих материалов; -невозможность осуществления этого способа при использовании технической воды, т. к. при температуре насыщенного пара на стенках устройства и на катализаторе будут образовываться отложения и накипь, что приведет к ее быстрому выходу из строя; - для сбора полученных водорода и кислорода используются специальные сборные емкости, что делает способ пожаро- и взрывоопасным. Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла. Это достигается тем, что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550 o C и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода. Предложенный способ основан на следующем. 1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля. 2. Температура воспламенения водорода от 580 до 590 o C, разложение воды должно быть ниже порога зажигания водорода. 3. Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам. 4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве. 5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов. Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок. Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб. 1. Работа и устройство установки первого варианта (схема 1). Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с. Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с. Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал. Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/. Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами. В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм. Труба - электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока. Выход водорода по отношению к кислороду 1:5. 2. Работа и устройство установки по второму варианту (схема 2). Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/. Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения - "пуск" и "работа". Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1/ до 550 o C. Теплообменник /То/ - труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения. Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки. Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, - образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле: 2H 2 + O 2 = 2H 2 O + тепло В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС. После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения "пуск" переводится в положение "работа", после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя. Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины. Недостаток силовых установок для ВЭС - это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1/, 227 котлов /К2/. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС, дешевой электрической энергии и тепле. 3-й вариант силовой установки (схема 3). Это точно такая же силовая установка, как и вторая. Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВтч. Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м. Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА - 380 х 6000 В. Изобретение имеет следующие преимущества. 1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды. 2. Небольшой расход воды при получении электроэнергии и тепла. 3. Простота способа. 4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима. 5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды. 6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода. 7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки. 8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы. Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое - воду при сохранении мощности этих установок.

Формула изобретения

Способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 - 550 o C, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Похожие патенты:

Изобретение относится к технологии углеграфитовых материалов, в частности к устройству, обеспечивающему возможность получения соединений внедрения в графит сильных кислот (СВГ), например H2SO4, HNO3 и др., путем анодного окисления графита в растворах указанных кислот

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии - водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз - очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции - восстановления - в видимом (солнечном) свете с энергетической эффективностью 100% , значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения - и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О 2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H 2 , производя полезную форму водорода - газ H 2 ,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H 2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.

Изобретение относится к водородной энергетике. Техническим результатом изобретения является получение водорода за счет разложения воды. Согласно изобретению способ получения водорода из воды включает разложение воды под действием электрического поля с помощью водяного коаксиального конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, при этом разложение воды на кислород и водород происходит под действием резонансного электромагнитного поля, частота n-ой гармоники которого приближается к собственной частоте воды, причем энергия разложения воды складывается из тепловой и минимально расходуемой электрической энергии разложения воды. Патентуется также устройство для реализации заявленного способа. 2 н. и 1 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2456377

Изобретение относится к технике получения водорода из воды (водородной энергетике) электролизом и может быть использовано в качестве узла для преобразования тепловой энергии, при сжигании водорода, в механическую.

Известен двигатель Стенли Мейера, работающий на водороде, который получается из воды путем ее электролитического разложения (патент США № 5149507). Это устройство содержит две пары коаксиально расположенных электрода, размещенных в воде, причем у одной пары отсутствует контакт с водой. На изолированные электроды подается высокое напряжение не выше 10 кВ и частотой 15-260 кГц. На остальные электроды для нейтрализации атомов водорода и кислорода подается постоянное низковольтное напряжение.

Исходя из физического принципа обратимости энергии для получения из воды, например, кубометра водорода (при 0°С и 101,3 кПа), необходимо затратить 10,8 мДж/м 3 или 2580 ккал/м 3 энергии, т.е. столько же, сколько выделяется при сжигании водорода при тех же условиях. Это значит, что при сжигании кубометра водорода получим 2580 ккал/сек. В устройстве Мейлера выделяется за секунду не более 710 кал, т.е. в 3600 раз меньше.

Известно, что резонансная (собственная) частота воды (50,8 и 51,3) 10 ГГц, поэтому резонанс воды будет происходить, если возмущающее воздействие будет иметь указанную частоту, что никак не согласуется с представленной Меером электросхемой.

Кроме того, устройство Мейлера не обеспечивает условия поглощения тепла как из окружающей среды, так и от других источников тепла, например, из самой воды, на компенсацию эндотермического эффекта реакции разложения воды.

Целью изобретения является повышение производительности, КПД, экономической целесообразности.

Для получения указанных целей необходимо увеличение энергетической мощности для совершения полезной работы при условии работы электросхемы в режиме резонанса или максимально к ней приближенной. Допустим, что мы имеем несинусоидальное напряжение питания, представляющее собой двухполупериодное выпрямленное синусоидальное напряжение. Тогда условие резонанса на к-ой гармонической составляющей запишется в виде

Х LK =K L=N 2 AKµa /L=X CK =1/K ·C=d/KAa .

В нашем случае (51)10 ГГц - резонансная частота воды, значит, для к-ой гармоники K =(51)10 ГГц, откуда =(51)10 ГГц/K.

Откуда частота питающего напряжения к-ой гармоники может быть снижена в к раз, однако она остается достаточно высокой. Для увеличения входной частоты можно использовать способ ее увеличения за счет сложения частот от нескольких питающих напряжений, соединенных параллельно резонансным контуром при условии не совпадения амплитуд входных напряжений, что достигается сдвигом их фаз на угол, удовлетворяющий первому условию. Следует отметить, что индуктивность, также как и емкость резонансного контура, с целью обеспечения наибольшего поверхностного контакта с водой может состоять из параллельного, последовательного или смешанного соединения элементов, что обеспечивает равномерность передачи удельной энергии по всему объему, и в свою очередь с увеличением объема устройства создаются условия для увеличения производительности выделения газов за счет увеличенной подачи тепловой и электрической энергий. Примем, что, например, при сжигании 1 литра водорода выделяется К калорий тепла за доли секунды. Количество образовавшейся воды составит примерно 0.001 литра. Эти параметры соответствуют границе перехода ГА3-ВОДА и ВОДА-ГАЗ, т.е. они обратимы. Это значит, чтобы разложить 0.001 литра воды без затрат электроэнергии, надо равномерно распылить ее в объеме 1 литр и сообщить К калорий тепла с плюсом на потери за то же время. Как видим, соотношение в затратах электрической и тепловой энергий для разложения воды зависит от многих параметров и требует экспериментального исследования. При стремлении к минимальному расходу электроэнергии требуется ужесточение энергетических тепловых параметров, например, невозможность создания высокого давления или требуемой тепловой мощности при той же предполагаемой производительности, требует эквивалентной компенсации недостающей тепловой энергии энергией электромагнитного поля. Известно, что уменьшение энергии электрического поля при резонансе сопровождается увеличением энергии магнитного поля и наоборот, т.е.: W=Wm+Wэ=L1/2=CU/2=CONST. Поэтому, чтобы не терять половину энергии, индуктивность размещаем внутри водяного конденсатора. Таким образом на молекулы воды действуют две резонансные направленные под углом 90 градусов силы от электрического и магнитного полей, которые, используя тепловую энергию, расщепляют молекулу воды на водород и кислород. При одновременном действии этих сил требуется смещение, например, фазы магнитного поля относительно электрического на 90 градусов, которое может быть достигнуто с помощью фазосдвигающих устройств.

Подвод тепловой энергии для компенсации эндотермического эффекта при разложении воды происходит за счет циркуляции воды (например, насосом) по замкнутому контуру, через устройство разложения воды, теплоприемником и устройством восполнения потерь воды при разложении. Теплоприемник - это устройство с развитой поверхностью, обогреваемой солнцем, или (и) обеспечивает впрыск в холодную воду продуктов сгорания, например, от водородного двигателя, тем самым замыкая процесс и значительно повышая КПД. Устройство предлагаемого контура повышает экономичность промышленного производства, позволяет использовать его как в устройствах промышленной энергетики, так и автомобильно-железнодорожном транспорте. При создании нескольких параллельных контуров создается возможность отбирать тепловую энергию от многих источников.

Способ получения водорода из воды включает разложение воды под действием электрического поля с помощью водяного коаксиального конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, разложение воды на кислород и водород происходит под действием резонансного электромагнитного поля n-гармоники, которая приближается к собственной частоте воды, причем энергия разложения воды складывается из тепловой и минимально расходуемой электрической энергии разложения воды.

В устройстве для получения водорода из воды между обкладками конденсатора размещена индуктивность, обеспечивающая разделение и перемещение кислорода и водорода по выходным не сообщающимся друг с другом отверстиям, причем нейтрализация газов происходит с помощью токопроводящих сеток, установленных на выходе отверстий, которые связаны с источником постоянного напряжения, а подача тепловой энергии происходит по замкнутым параллельным контурам, каждый из которых связан с источником посторонней тепловой энергии, причем теплоносителем является вода, циркулирующая с помощью насоса с изменяющейся производительностью, при этом индуктивность и емкость резонансного контура состоит из параллельных, последовательных и смешанных электрических соединений элементов.

На фиг. представлено устройство, реализующее предлагаемый способ. Устройство содержит корпус 5, выполненный способом литья под давлением, например, из теплостойкого сополимера, диэлектрическая проницаемость которого доходит до 100000 единиц, имеет горизонтальные каналы, обеспечивающие вход-выход воды, которые соединяются с коаксиально расположенными каналами, в перегородках которых залиты обкладки конденсатора 1 и обмотки индуктивности 2. Коаксиальные каналы вертикальными отверстиями, по ходу магнитных силовых линий индуктивностей 2, связаны с выходными газовыми отверстиями, имеющими металлические сетки 4, на которые подается постоянное напряжение, обеспечивающее нейтрализацию ионов водорода и кислорода. Клапаны 3 обеспечивают выход газов при незначительном избыточном давлении.

Устройство работает следующим образом. При подаче высокочастотного высоковольтного напряжения на элементы 1, 2 последовательного резонансного контура и заполнения каналов циркуляционной нагретой водой, за счет электрической и тепловой энергий происходит разложение воды на ионы кислорода и водорода. Под действием магнитного поля индуктивности 2 ионы кислорода и водорода разделяются в пространстве магнитного поля и каждый газ раздельно по своим каналам проходит через металлические сетки 4, где нейтрализуется и через клапана 3 нейтральные газы поступают по своему назначению.

Преимущество устройства в сравнении с прототипом то, что вода одновременно является носителем тепловой энергии. Увеличение электрической энергии на единицу объема воды в результате развитой контактной поверхности емкостных пластин с водой приводит к увеличению производительности и эффективности работы устройства. Размещение индуктивности в устройстве приводит к увеличению производительности и КПД устройства. Устройство производит разделение газов (водорода и кислорода). При изменении скорости воды создается возможность изменять производительность.

Наша планета купается в потоке тепловой энергии, поступающей от Солнца, из земных недр и от хозяйственной деятельности человека. Человек в недостаточной степени осваивает эту энергию, поэтому данное изобретение направлено на освоение дармовой указанной выше энергии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения водорода из воды, включающий разложение воды под действием электрического поля с помощью водяного коаксиального конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, отличающийся тем, что разложение воды на кислород и водород происходит под действием резонансного электромагнитного поля, частота n-й гармоники которого приближается к собственной частоте воды, причем энергия разложения воды складывается из тепловой и минимально расходуемой электрической энергии разложения воды.

2. Устройство, отличающееся тем, что между обкладками конденсатора размещена индуктивность, обеспечивающая разделение и перемещение кислорода и водорода по выходным несообщающимся друг с другом отверстиям, причем нейтрализация газов происходит с помощью токопроводящих сеток, установленных на выходе отверстий, которые связаны с источником постоянного напряжения, а подача тепловой энергии происходит по замкнутым параллельным контурам, каждый из которых связан с источником посторонней тепловой энергии, причем теплоносителем является вода, циркулирующая с помощью насоса с изменяющейся производительностью.

3. Устройство по п.2, отличающееся тем, что индуктивность и емкость резонансного контура состоит из параллельных, последовательных и смешанных электрических соединений элементов.

Для этого нужен более сложный прибор - электролизер, который состоит из широкой загнутой трубки, наполненной раствором щелочи, в которую погружены два электрода из никеля.

Кислород будет выделяться в правом колене электролизера, куда подключен положительный полюс источника тока, а водород - в левом.

Это обычный тип электролизера, которым пользуются в лабораториях для получения небольших количеств чистого кислорода.

В больших количествах кислород получают в электролитических ваннах разнообразных типов.

Войдем в один из электрохимических заводов по производству кислорода и водорода. В огромных светлых залах-цехах строгими рядами стоят аппараты, к которым по медным шинам подводится постоянный ток. Это электролитические ванны. В них из воды можно получить кислород и водород.

Электролитическая ванна - сосуд, в котором параллельно друг другу расположены электроды. Сосуд наполняют раствором - электролитом. Число электродов в каждой ванне зависит от размера сосуда и от расстояния между электродами. По схеме включения электродов в электрическую цепь ванны делятся на однополярные (монополярные) и двухполярные (биполярные).

В монополярной ванне половина всех электродов подключается к положительному полюсу источника тока, а вторая половина - к отрицательному полюсу.

В такой ванне каждый электрод служит или анодом, или катодом, и на обеих сторонах его идет один и тот же процесс.

В биполярной ванне источник тока подключается только к крайним электродам, один из которых служит анодом, а другой - катодом. С анода ток поступает в электролит, через который он переносится ионами к близлежащему электроду и заряжает его отрицательно.

Проходя через электрод, ток снова входит в электролит, заряжая обратную сторону этого электрода положительно. Таким образом, проходя от одного электрода к другому, ток доходит до катода.

В биполярной ванне только анод и катод работают как монополярные электроды. Все же остальные электроды, расположенные между ними, являются с одной стороны катодами (-), а с другой стороны - анодами (+).

При прохождении электрического тока через ванну между электродами выделяются кислород и водород. Эти газы нужно отделить друг от друга и направить каждый по своему трубопроводу.

Существуют два способа отделения кислорода от водорода в электролитической ванне.

Первый из них заключается в том, что электроды отгораживаются друг от друга металлическими колоколами. Образующиеся на электродах газы поднимаются в виде пузырьков кверху и попадают каждый в свой колокол, откуда через верхний отвод направляются в трубопроводы.

Этим способом кислород легко отделить от водорода. Однако такое разделение приводит к излишним, непроизводительным затратам электроэнергии, так как электроды приходится ставить на большом расстоянии друг от друга.

Другой способ разделения кислорода и водорода при электролизе заключается в том, что между электродами ставится перегородка - диафрагма, которая является непроницаемой для пузырьков газа, но хорошо пропускает электрический ток. Диафрагма может быть сделана из плотно сотканной асбестовой ткани толщиной 1,5-2 миллиметра. Эту ткань натягивают между двумя стенками сосуда, создавая тем самым изолированные друг от друга катодные и анодные пространства.

Водород из всех катодных и кислород из всех анодных пространств поступают в сборные трубы. Оттуда по трубопроводам каждый газ направляется в отдельное помещение. В этих помещениях под давлением 150 атмосфер полученными газами наполняют стальные баллоны. Баллоны направляют во все уголки нашей страны. Кислород и водород находят широкое применение в различных областях народного хозяйства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .