Форма и размеры земли. системы координат. Высоты.

2.1. Форма и размеры Земли

Изучение формы и размеров Земли включает решение двух задач. Это - установление некоторой сглаженной, обобщенной, теоретической фигуры Земли и определение отклонений от нее фактической физической поверхности.

Учитывая, что поверхность океанов и морей составляет 71% поверхности Земли, а поверхность суши - только 29%, за теоретическую фигуру Земли принято тело, ограниченное поверхностью океанов в их спокойном состоянии, продолженной и под материками, и называемое геоидом .

Поверхность, в каждой своей точке перпендикулярная к отвесной линии (направлению силы тяжести), называется уровенной поверхностью . Из множества уpовенных поверхностей одна совпадает с поверхностью геоида.

Из-за неравномерности распределения масс в земной коре геоид имеет неправильную геометрическую форму, и его поверхность нельзя выразить математически, что необходимо для решения геодезических задач. При решении геодезических задач геоид заменяют близкими к нему геометрически правильными поверхностями.

Так, для приближенных вычислений Землю принимают за шар с радиусом 6371 км.

Ближе к форме геоида подходит эллипсоид – фигура, получаемая вращением эллипса (рис. 2.1) вокруг его малой оси. Размеры земного эллипсоида характеризуют следующими основными параметрами: a - большая полуось, b - малая полуось, a - полярное сжатие и e – первый эксцентриситет меридианного эллипса, где и .

Различают общеземной эллипсоид и референц-эллипсоид.

Центр общеземного эллипсоида помещают в центре масс Земли, ось вращения совмещают со средней осью вращения Земли, а размеры принимают такие, чтобы обеспечить наибольшую близость поверхности эллипсоида к поверхности геоида. Общеземной эллипсоид используют при решении глобальных геодезических задач, и в частности, при обработке спутниковых измерений. В настоящее время широко пользуются двумя общеземными эллипсоидами: ПЗ-90 (Параметры Земли 1990 г, Россия) и WGS-84 (Мировая геодезическая система 1984 г, США).

Референц-эллипсоид – эллипсоид, принятый для геодезических работ в конкретной стране. С референц-эллипсоидом связана принятая в стране система координат. Параметры референц-эллипсоида подбираются под условием наилучшей аппроксимации данной части поверхности Земли. При этом совмещения центров эллипсоида и Земли не добиваются.

В России с 1946 г. в качестве референц-эллипсоида используется эллипсоид Красовского с параметрами: а = 6 378 245 м, a = 1/ 298,3.

2.2. Системы координат, применяемые в геодезии

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты . Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).

Ось Z направлена по оси вращения эллипсоида к северу. Ось Х лежит в пересечении плоскости экватора с начальным - гринвичским меридианом. Ось Y направлена перпендикулярно осям Z и X на восток.

Геодезические координаты . Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтой точки М называется угол В , образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0° до 90° и называется северной или южной. Северную широту считают положительной, а южную - отрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ , называются геодезическими меридианами .

Геодезической долготой точки М называется двугранный угол L , образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготы отсчитывают от начального меридиана в пределах от 0° до 360° на восток, или от 0° до 180° на восток (положительные) и от 0° до 180° на запад (отрицательные).

Геодезической высотой точки М является ее высота Н над поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами

X = (N + H ) cosB cosL ,

Y = (N+H ) cosB sinL ,

Z = [(1 - e 2 ) N+H ] sinB ,

где e - первый эксцентриситет меридианного эллипса и N - радиус кривизны первого вертикала. При этом N=a/ (1 - e 2 sin 2 B ) 1/2 .

Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами.

Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота. Астрономическая широта j это - угол, составленный отвесной линией в данной точке с плоскостью экватора. Астрономическая долгота l – угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.

Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии .

Обобщением геодезических и астрономических координат является термин – географические координаты .

Плоские прямоугольные координаты . Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым – плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у .

Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно–цилиндрическая проекция Гаусса. Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6°. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.

Долгота осевого меридиана зоны с номером N равна:

l 0 = 6°× N - 3° .

Осевой меридиан зоны и экватор изображаются на плоскости прямыми линиями (рис. 2.4). Осевой меридиан принимают за ось абсцисс x , а экватор - за ось ординат y. Их пересечение (точка O ) служит началом координат данной зоны.

Чтобы избежать отрицательных значений ординат, координаты пересечения принимают равными x 0 = 0, y 0 = 500 км, что равносильно смещению оси х к западу на 500 км.

Чтобы по прямоугольным координатам точки можно было судить, в какой зоне она расположена, к ординате y слева приписывают номер координатной зоны.

Пусть например, координаты точки А имеют вид:

x А = 6 276 427 м

y А = 12 428 566 м

Эти координаты указывают на то, что точка А находится на расстоянии 6276427 м от экватора, в западной части (y < 500 км) 12-ой координатной зоны, на расстоянии 500000 - 428566 = 71434 м от осевого меридиана.

Для пространственных прямоугольных, геодезических и плоских прямоугольных координат в России принята единая система координат СК-95, закрепленная на местности пунктами государственной геодезической сети и построенная по спутниковым и наземным измерениям по состоянию на эпоху 1995 г.

Местные системы прямоугольных координат. При строительстве различных объектов часто используют местные (условные) системы координат, в которых направления осей и начало координат назначают, исходя из удобства их использования в ходе строительства и последующей эксплуатации объекта.

Так, при съемке железнодорожной станции ось у направляют по оси главного железнодорожного пути в направлении возрастания пикетажа, а ось х – по оси здания пассажирского вокзала.

При строительстве мостовых переходов ось х обычно совмещают с осью моста, а ось y идет в перпендикулярном направлении.

При строительстве крупных промышленных и гражданских объектов оси x и y направляют параллельно осям строящихся зданий.

2.3. Системы высот

Счет высот в инженерной геодезии ведут от одной из уровенных поверхностей.

Высотой точки называют расстояние по отвесной линии от точки до уровенной поверхности, принятой за начало счета высот.

Если высоты отсчитывают от основной уровенной поверхности, то есть от поверхности геоида, их называют абсолютными высотами Аа и Вв - абсолютные высоты точек А и В .

Если за начало счета высот выбрана какая-либо другая уровенная поверхность, то высоты называют условными . На рис. 2.5 отрезки отвесных линий Аа ¢ и Вв ¢ - условные высоты точек А и В .

В России принята Балтийская система высот. Счет абсолютных высот ведут от уровенной поверхности, проходящей через нуль Кронштадтского футштока .

Численное значение высоты принято называть отметкой. Например, если высота точки А равна H А = 15,378 м, то говорят, что отметка точки равна 15,378 м.

Разность высот двух точек называется превышением . Так, превышение точки В над точкой А равно

h AB = H В - H A .

Зная высоту точки А , для определения высоты точки В на местности измеряют превышение h AB . Высоту точки В вычисляют по формуле

H В = H A + h AB .

Измерение превышений и последующее вычисление высот точек называется нивелированием.

Абсолютную высоту точки следует отличать от ее геодезической высоты, то есть высоты, отсчитываемой от поверхности земного эллипсоида (см. раздел 2.2). Геодезическая высота отличается от абсолютной высоты на величину отклонения поверхности геоида от поверхности эллипсоида.

В заключение отметим, что точное определение положения поверхности геоида в области материков невозможно. Поэтому в России принято отсчитывать высоты от близкой к геоиду, но доступной точному определению вспомогательной поверхности, названной квазигеоидом . Высоты, отсчитываемые от поверхности геоида, называются ортометрическими высотами, а отсчитываемые от поверхности квазигеоида – нормальными высотами. На результаты измерений, выполняемых в инженерной геодезии, различия в двух названных системах высот влияния не оказывают, и в дальнейшем мы их различать не будем, а будем пользоваться введенным выше обобщенным понятием – абсолютные высоты.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Топографическое изучение земной поверхности заключается в определении положения ситуации и рельефа относительно математической поверхности Земли, т.е. в определении пространственных координат характерных точек, необходимых и достаточных для моделирования местности. Модель местности может быть представлена в виде геодезических чертежей, изготовление которых называют картографированием, и аналитически – в виде совокупности координат характерных точек. Для построения моделей местности в геодезии применяют метод проекций и различные системы координат.

Метод горизонтальной проекции заключается в том, что изучаемые точки (A, B, C, D, E ) местности с помощью вертикальных (отвесных) линии проектируются на уровенную поверхностьУ (рис. 5), в результате чего получают горизонтальные проекции этих точек (a, b, c, d, e ). ОтрезкиАa, Bb, Cc, Dd, Ee называются высотами точек, а численные их значения – отметками.

Высота точки является одной из её пространственных координат. Отметка называется абсолютной, если в качестве уровенной поверхности принимается геоид, и относительной или условной, если для этого принимается произвольная уровенная поверхность.

Рис. 5. Проектирование точек местности на уровенную поверхность Земли

Две другие недостающие координаты точки определяются с помощью системы координат, построенной на математической поверхности Земли (рис. 6).

Через любую точку поверхности референц-эллипсоида можно провести две взаимно перпендикулярные плоскости:

    плоскость геодезического меридиана – плоскость, проходящая через ось вращения ЗемлиPP" ;

    плоскость геодезической широты , которая перпендикулярна плоскости геодезического меридиана.

Следы сечения поверхности референц-эллипсоида этими плоскостями называют меридианом (М ) и параллелью .

Меридиан , проходящий через астрономическую обсерваторию в Гринвиче, называетсяначальным илинулевым (М 0 ).

Параллель , плоскость которой проходит через центр ЗемлиO , называетсяэкватором (Э ).

Плоскость , проходящая через центр ЗемлиO перпендикулярно к её оси вращенияPP" , называетсяэкваториальной .

Основой для всех систем координат являются плоскости меридиана и экватора.

Рис. 6. Система географических координат Рис. 7. Система геодезических координат

Системы координат подразделяются на угловые, линейные и линейно – угловые.

Примером угловых координат являются географические координаты (рис.6): широта и долгота. Вдоль соответствующих параллели и меридиана широта и долгота точек постоянны.

В геодезии применяются следующие системы координат:

    геодезические;

    астрономические;

    географические;

    плоские прямоугольные геодезические (зональные);

    полярные;

Геодезические координаты

Геодезические координаты определяют положение точки земной поверхности на референц-эллипсоиде (рис.7).

Геодезическая широта B – угол, образованный нормалью к поверхности эллипсоида в данной точке и плоскостью его экватора. Широта отсчитывается от экватора к северу или югу от 0° до 90° и соответственно называется северной или южной широтой.

Геодезическая долгота L – двугранный угол между плоскостями геодезического меридиана данной точки и начального геодезического Гринвичского меридиана.

Долготы точек, расположенных к востоку от начального меридиана, называются восточными, а к западу – западными.

Астрономические координаты (для геодезии)

Астрономическая широта и долготаопределяют положение точки земной поверхности относительно экваториальной плоскости и плоскости начального астрономического меридиана (рис.8).

Рис. 8. Система астрономических координат Рис. 9. Система географических координат

Астрономическая широта

Астрономическая долгота – двугранный угол между плоскостями астрономического меридиана данной точки и начального астрономического меридиана.

Плоскостью астрономического меридиана является плоскость, проходящая через отвесную линию в данной точке и параллельная оси вращения Земли.

Астрономическая широта и долготаопределяются астрономическими наблюдениями.

Геодезические и астрономические координаты отличаются (имеют расхождение) из-за отклонения отвесной линии от нормали к поверхности эллипсоида. При составлении географических карт этим отклонением пренебрегают.

Географические координаты

Географические координаты – величины, обобщающие две системы координат: геодезическую и астрономическую, используют в тех случаях, когда отклонение отвесных линий от нормали к поверхности не учитывается (рис.9).

Географическая широта – угол, образованный отвесной линией в данной точке и экваториальной плоскостью.

Географическая долгота – двугранный угол между плоскостями меридиана данной точки с плоскостью начального меридиана.

Плоские прямоугольные геодезические координаты (зональные).

При решении инженерно-геодезических задач в основном применяют плоскую прямоугольную геодезическую и полярную системы координат.

Для определения положения точек в плоской прямоугольной геодезической системе координат используют горизонтальную координатную плоскость ХОУ (рис. 10), образованную двумя взаимно перпендикулярными прямыми. Одну из них принимают за ось абсциссX , другую – за ось ординатY , точку пересечения осейО – за начало координат.

Рис. 10. Плоская прямоугольная система координат

И
зучаемые точки проектируют с математической поверхности Земли на координатную плоскостьХОУ . Так как сферическая поверхность не может быть спроектирована на плоскость без искажений (без разрывов и складок), то при построении плоской проекции математической поверхности Земли принимается неизбежность данных искажений, но при этом их величины должным образом ограничивают. Для этого применяется равноугольная картографическая проекция Гаусса – Крюгера (проекция названа по имени немецких ученых, предложивших данную проекцию и разработавших формулы для её применения в геодезии), в которой математическая поверхность Земли проектируется на плоскость по участкам – зонам, на которые вся земная поверхность делится меридианами через 6° или 3°, начиная с начального меридиана (рис. 11).

Рис. 11. Деление математической поверхности Земли на шестиградусные зоны

В пределах каждой зоны строится своя прямоугольная система координат. С этой целью все точки данной зоны проецируются на поверхность цилиндра (рис. 12, а), ось которого находится в плоскости экватора Земли, а его поверхность касается поверхности Земли вдоль среднего меридиана зоны, называемого осевым. При этом соблюдается условие сохранения подобия фигур на земле и в проекции при малых размерах этих фигур.

Рис. 12. Равноугольная картографическая проекция Гаусса – Крюгера (а) и зональная система координат (б):

1 – зона, 2 – координатная сетка, 3 – осевой меридиан, 4 – проекция экватора на поверхность цилиндра, 5 – экватор,

6 – ось абсцисс – проекция осевого меридиана, 7 – ось ординат – проекция экватора

После проектирования точек зоны на цилиндр, он развертывается на плоскость, на которой изображение проекции осевого меридиана и соответствующего участка экватора будет представлена в виде двух взаимно перпендикулярных прямых (рис. 12, б). Точка пересечения их принимается за начало зональной плоской прямоугольной системы координат, изображение северного направления осевого меридиана – за положительную ось абсцисс, а изображение восточного направления экватора – за положительное направление оси ординат.

Для всех точек на территории нашей страны абсциссы имеют положительное значение. Чтобы ординаты точек также были только положительными, в каждой зоне ординату начала координат принимают равной 500 км (рис. 12, б). Таким образом, точки, расположенные к западу от осевого меридиана, имеют ординаты меньше 500 км, а к востоку – больше 500 км. Эти ординаты называют преобразованными.

На границах зон в пределах широт от 30° до 70° относительные ошибки, происходящие от искажения длин линий в этой проекции, колеблются от 1: 1000 до 1: 6000. Когда такие ошибки недопустимы, прибегают к трехградусным зонам.

На картах, составленных в равноугольной картографической проекции Гаусса – Крюгера, искажения длин в различных точках проекции различны, но по разным направлениям, выходящим из одной и той же точки, эти искажения будут одинаковы. Круг весьма малого радиуса, взятый на уровенной поверхности, изобразится в этой проекции тоже кругом. Поэтому говорят, что рассматриваемая проекция конформна, т. е. сохраняет подобие фигур на сфере и в проекции при весьма малых размерах этих фигур. Таким образом, изображения контуров земной поверхности в этой проекции весьма близки к тем, которые получаются.

Четверти прямоугольной системы координат нумеруются. Их счет идет по ходу стрелки от положительного направления оси абсцисс (рис.13).

Рис. 13. Четверти прямоугольной системы координат

Если за начало плоской прямоугольной системы координат принять произвольную точку, то она будет называться относительной или условной.

Полярные координаты

При выполнении съемочных и разбивочных геодезических работ часто применяют полярную систему координат (рис.14). Она состоит из полюса О и полярной осиОР , в качестве которых принимается прямая с известным началом и направлением.

Рис. 14. Полярная система координат

Для определения положения точек в данной системе используют линейно-угловые координаты: угол β , отсчитываемый по часовой стрелке от полярной осиОР до направления на горизонтальную проекцию точкиА" , и полярное расстояниеr от полюса системыО до проекцииА" .

Системы высот

Высота точки является третьей координатой, определяющей её положение в пространстве.

В геодезии для определения отметок точек применяются следующие системы высот (рис.15):

    ортометрическая (абсолютная);

    геодезическая;

    нормальная (обобщенная);

    относительная (условная).

Рис. 15. Системы высот в геодезии

Ортометрическая (абсолютная) высота H о – расстояние, отсчитываемое по направлению отвесной линии от поверхности геоида до данной точки.

Геодезическая высота H г – расстояние, отсчитываемое по направлению нормали от поверхности референц-эллипсоида до данной точки.

В нормальной системе высот отметка точкиH н отсчитывается по направлению отвесной линии от поверхностиквазигеоида , близкой к поверхности геоида.

Квазигеоид («якобы геоид») – фигура, предложенная в 1950-х г.г. советским учёным М.С. Молоденским в качестве строгого решения задачи определения фигуры Земли. Квазигеоид определяется по измеренным значениям потенциалов силы тяжести согласно положениям теории М.С. Молоденского.

В нашей стране все высоты реперов государственной нивелирной сети определены в нормальной системе высот. Это связано с тем, что положение геоида под материками определить сложно. Поэтому с конца 40-х годов в СССР было принято решение не применять ортометрическую систему высот.

В России абсолютные высоты точек определяются в Балтийской системе высот (БСВ) относительнонуля Кронштадтского футштока – горизонтальной черты на медной пластине, прикрепленной к устою моста через обводной канал в г. Кронштадте.

Относительная высота H у – измеряется от любой другой поверхности, а не от основной уровенной поверхности.

Местная система высот – Тихоокеанская, её уровенная поверхность ниже нуля Кронштадтского футштока на 1873 мм.

ВВЕДЕНИЕ

Координаты — это величины, определяющие положение любой точки на поверхности или в пространстве относительно принятой системы координат.
Система координат устанавливает начальные (исходные) точки, поверхности или линии отсчета необходимых величин — начало отсчета координат, единицы их исчисления. В топографии и геодезии наибольшее применение получили системы географических, прямоугольных и полярных координат.
Система географических координат применяется для определения положения точек Земли на эллипсоиде или шаре. Исходными плоскостями в этой системе являются плоскости начального меридиана и экватора, а координатами — угловые величины: долгота и широта точки.
Из первой темы известно, что меридиан - это линия сечения эллипсоида плоскостью проходящей через данную точку и полярную ось вращения Земли.
Параллелью называют линию сечения эллипсоида плоскостью, проходящей через данную точку и перпендикулярную земной оси РР". Параллель, проходящая через центр эллипсоида, называется экватором.
Географические координаты могут быть получены на основании астрономических наблюдений или геодезических измерений. В первом случае их называют астрономическими , во втором - геодезическими . При астрономических наблюдениях проектирование точек на поверхность осуществляется отвесными линиями, при геодезических измерениях - нормалями, поэтому величины астрономических и геодезических географических координат несколько отличаются.
К системам координат, которые наиболее часто применяют в геодези, относятся геодезическая, астрономическая, сферическая, плоская прямоугольная, полярная и биполярная.

3.1. ГЕОДЕЗИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Геодезическими координатами называются угловые величины (широта и долгота), определяющие положение точек (объектов) на поверхности земного эллипсоида (референц-эллипсоида) относительно плоскости экватора и начального меридиана.
Геодезической широтой (В ) называется угол, заключенный между плоскостью экватора и нормалью к поверхности земного эллипсоида, проходящей через данную точку.

Рис. 3.1. Геодезическая система координат

Счет геодезических широт ведется от 0 до 90° к северу и к югу от экватора. Геодезические широты Северного полушария называются северными и имеют знак « + », а Южного — южными и имеют знак «—». Геодезическая широта измеряется центральным углом в плоскости меридиана.
Геодезическая широта (в градусах) показывает, насколько данная точка на земном эллипсоиде расположена севернее или южнее плоскости экватора.
Геодезическая широта для точек, расположенных на экваторе, будет равна 0°, а для точек, расположенных на полюсах ± 90°.
Геодезической долготой (L ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью геодезического меридиана, проходящего через данную точку.
В старину в отдельных государствах за начальный меридиан принимали меридиан, проходящий через свою главную обсерваторию. В настоящее время в Украине и в большинстве стран мира для единообразия в определении долгот условились начальным считать Гринвичский меридиан , проходящий через астрономическую обсерваторию в Гринвиче (близ Лондона). От этого меридиана ведется счет так называемого международного гринвичского времени.
Геодезическая долгота измеряется либо центральным углом в плоскости экватора или параллели, либо дугой экватора от начального (Гринвичского) меридиана до меридиана, проходящего через данную точку (М ), в пределах от 0 до 180° к востоку или к западу. Геодезические долготы для точек, расположенных к востоку от меридиана Гринвича до 180°, называются восточными и считаются положительными, а к западу - западными и считаются отрицательными.
Восточная долгота обозначается буквами (в.д .) или знаком « + », западная долгота — буквами (з.д .) или знаком « - ».
Геодезическая система координат, отнесенная к эллипсоиду Красовского, была разработана в 1942 - 1943 годах, поэтому она получила название системы координат 1942 года. Вместе с ней была принята Балтийская система высот, по которой ведется отсчет абсолютных высот относительно нуля Кронштадтского футштока (Футшток — специальная рейка с делениями).

3.2. АСТРОНОМИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Астрономические координаты определяют положение точки на поверхности геоида. Их можно получить путем астрономических измерений с помощью геодезических инструментов или путем математической обработки результатов геодезических измерений.
Астрономической широтой (φ ) называется угол, заключенный между плоскостью земного экватора и направлением отвесной линии в данной точке.
Астрономическая широта измеряется от 0 до 90° к северу и к югу от экватора. В Северном полушарии астрономические широты называются северными, а в Южном — южными.
Отвесная линия в общем случае не совпадает с направлением нормали к поверхности земного эллипсоида. Поскольку различные по плотности массы в теле Земли распределены неравномерно, то отклонение отвесной линии (силы тяжести) от нормали различное в разных точках Земли. Так, например, в районе Кавказа отклонения отвесных линий от нормалей достигают 35", а разность отклонений отвесных линий на противоположных берегах озера Байкал достигает 40". В среднем величина отклонений равна 4 - 5" (рис. 3.2).

Рис. 3.2. Астрономическая система координат

Астрономической долготой (λ) называется двугранный угол, заключенный между плоскостью начального астрономического меридиана и плоскостью астрономического меридиана, проходящего через данную точку .
Поскольку плоскость астрономического меридиана проходит через отвесную линию в данной точке на поверхности Земли, а плоскость геодезического меридиана проходит через нормаль к поверхности эллипсоида, следовательно, плоскости астрономического и геодезического меридианов не совпадают. В результате этого геодезическая широта, долгота и геодезический азимут в данной точке отличаются от астрономической широты, долготы, и астрономического (истинного) азимута. Эти расхождения будут увеличиваться там, где наблюдаются большие отклонения отвесной линии от нормали, а также в тех точках геоида, где его поверхность дальше удалена от поверхности эллипсоида.
Геодезическая и астрономическая системы координат различаются как две отдельные системы при определении местоположения объектов с точностью до 1" (в линейной величине до 20 - 30 м ). Зная астрономические координаты, можно вычислить геодезические координаты путем ввода поправок на уклонение отвесных линий от нормалей, определяемых астрономо-геодезическим методом или по специальным гравиметрическим картам.

3.3. СФЕРИЧЕСКАЯ СИСТЕМА КООРДИНАТ

При решении ряда геодезических задач и составлении карт мелких масштабов Землю принимают за сферу. Положение точек местности на сфере определяется сферическими координатами: сферической широтой и сферической долготой.
Сферическими координатами называются угловые величины (широта и долгота), определяющие положение точек местности на поверхности земной сферы относительно плоскости экватора и начального меридиана (рис. 3.2).
Сферической широтой (φ ) называется угол, заключенный между плоскостью экватора и направлением из центра земной сферы на данную точку. Сферическая широта измеряется центральным углом или дугой меридиана в тех же пределах, что и геодезическая широта - от 0 до 90° к северу и к югу от экватора. Сферические широты в Северном полушарии называются северными и обозначаются знаком «+», а в Южном - южными и обозначаются знаком «-».
Сферической долготой (λ ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью меридиана, проходящего через данную точку.
Сферическая долгота измеряется либо центральным углом в плоскости экватора или в плоскости параллели, либо дугой экватора или дугой параллели от началь-ного (Гринвичского) меридиана до меридиана, проходящего через данную точку в пределах от 0 до 180° к востоку и к западу.

Рис. 3.3. Сферическая система координат

Сферические долготы для точек, расположенных к востоку от Гринвичского меридиана до 180°, называются восточными и считаются положительными, а к западу — западными и считаются отрицательными. При решении некоторых практических задач сферическая долгота отсчитывается от 0 до 360° только к востоку от Гринвичского меридиана.
Все вычисления, связанные с автоматизированным определением координат, углов и расстояний, решаются на поверхности земной сферы с использованием формул сферической тригонометрии, поэтому поверхность земного эллипсоида проектируется на поверхность сферы.
В практике часто пользуются сферой радиусом R = 6371 км , поверхность которой равна поверхности эллипсоида. При этом максимальные погрешности в определении расстояний достигают 0,5% и углов не более 0,4°.
Длина дуги большого круга на сфере в 1секунду, равная 1852 м , называется морской милей .
Вышеназванные погрешности не позволяют реализовать точность современных средств автоматизированного определения координат. Поэтому в современных вычислителях с ЦВМ применяется формулы с учетом сжатия Земли. При этом максимальные искажения расстояний составляют 0,08% - 0,17%, а искажения углов практически отсутствуют.

3.4. ПОЛЯРНАЯ И БИПОЛЯРНАЯ СИСТЕМЫ КООРДИНАТ

Полярными координатами называются угловая и линейная величины, определяющие положение точки на плоскости относительно начала координат, принимаемого за полюс , и полярной оси . Местоположение любой точки определяется углом положения , отсчитанным от полярной оси до направления на определяемую точку, и расстоянием от полюса до этой точки (рис. 3.4).


Рис. 3.4. Полярная система координат

За полярную ось могут быть приняты: истинный или магнитный меридиан, вертикальная линия сетки и направление на любой ориентир.
При работе на местности за полярную ось принимают северное направление магнитного меридиана или направление на какой-нибудь ориентир с точки стояния.

Биполярными координатами называются две угловые или две линейные величины, определяющие местоположение точки на плоскости относительно двух исходных точек (полюсов). Положение любой точки на карте или на местности определяется двумя координатами. Этими координатами могут быть два угла положения либо два расстояния от полюсов до определяемой точки (рис. 3.5, 3.6).


Рис. 3.5. Определение места точки по двум дирекционным углам


Рис. 3.6. Определение места точки по двум дальностям

3.5. СИСТЕМА ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ

Плоскими прямоугольными геодезическими координатами (прямоугольными координатами) называются линейные величины — абсцисса и ордината,— определяющие положение точки на плоскости относительно исходных направлений.

Рис. 3.7. Система плоских прямоугольных координат

Исходными направлениями служат две взаимно перпендикулярные линии (рис. 3.7) с началом отсчета в точке их пересечения (О). Прямая XX является осью абсцисс, а прямая УУ, перпендикулярная к оси абсцисс, — осью ординат. В такой системе положение любой точки на плоскости определяется кратчайшим расстоянием до нее от осей координат. Так, положение точки А определяется длиной перпендикуляров ха и уа. Отрезок ха называется абсциссой точки А, а уа — ординатой. Выражаются абсциссы и ординаты в линейной мере (обычно в метрах).
В геодезии и топографии принята правая система прямоугольных координат: это отличает ее от левой системы координат, используемой в математике. Четверти системы координат (название которых определяется принятыми обозначениями стран света), нумеруются по ходу часовой стрелки. В такой системе упрощается измерение углов ориентирования.
Абсциссы точек, расположенных вверх от начала координат, считаются положительными, а вниз от нее — отрицательными.
Ординаты точек, расположенных вправо от начала координат, считаются положительными, а влево от нее — отрицательными (см. табл. 1.2).

Таблица 1.1

Четверти

Координаты

I
II
III
IV

Северо-восток (СВ)
Юго-восток (ЮВ)
Юго-запад (ЮЗ)
Северо-запад (СЗ)

+


+

+
+

Система плоских прямоугольных координат применяется на ограниченных участках земной поверхности, которые могут быть приняты за плоские.
Для небольших участков начало отсчета координат может быть в любой точке участка (система с условным началом координат). В государственной системе координат за ось ординат принимают линию экватора, за ось абсцисс — направление меридиана, который называется осевым (он совпадает с направлением одной из осей системы прямоугольных координат). При проведении работ на значительных по площади территориях осевыми выбирают несколько меридианов.

3.6. ОПРЕДЕЛЕНИЕ ГЕОДЕЗИЧЕСКИХ КООРДИНАТ ТОЧЕК ПО КАРТЕ

Топографические карты печатаются отдельными листами, размеры которых установлены для каждого масштаба. Боковыми рамками листов служат меридианы, а верхней и нижней рамками - параллели . (рис. 3.9). Следовательно, географические координаты можно определить по боковым рамкам топографической карты . На всех картах верхняя рамка всегда обращена на север.
Географическую широту и долготу подписывают в углах каждого листа карты. На картах Западного полушария в северо-западном углу рамки каждого листа правее значения долготы меридиана помещают надпись: «К западу от Гринвича».
На картах масштабов 1: 25 000 - 1: 200 000 стороны рамок разделены на отрезки, равные 1′ (одной минуте, рис. 3.8). Эти отрезки оттенены через один и разделены точками (кроме карты масштаба 1: 200 000) на части по 10" (десять секунд). На каждом листе карты масштабов 1: 50 000 и 1: 100 000 показывают, кроме того, пересечение среднего меридиана и средней параллели с оцифровкой в градусах и минутах, а по внутренней рамке - выходы минутных делений штрихами длиной 2 - 3 мм. Это позволяет при необходимости прочерчивать параллели и меридианы на карте, склеенной из нескольких листов.


Рис. 3.8. Боковые рамки карты

При составлении карт масштабов 1: 500 000 и 1: 1 000 000 на них наносят картографическую сетку параллелей и меридианов. Параллели проводят соответственно через 20′ и 40" (минут), а меридианы - через 30" и 1°.
Географические координаты точки определяют от ближайшей параллели и от ближайшего меридиана, широта и долгота которых известны. Например, для карты масштаба 1: 50 000 «ЗАГОРЯНИ» ближайшими параллелями будут параллели с широтами 54º40′ и 54º50′, а ближайшими меридианами будут меридиан с долготами 18º00′ и 18º15′ (рис. 3.10).


Рис. 3.9. Определение географических координат

Для определения широты заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайшую параллель (для нашей карты 54º40′);
  • не меняя раствор циркуля-измерителя установить его на боковую рамку с минутными и секундными делениями, одна ножка должна быть на южной параллели (для нашей карты 54º40′), а другая - между 10-секундными точками на рамке;
  • посчитать количество минут и секунд от южной параллели до второй ножки циркуля-измерителя;
  • добавить полученный результат к южной широте (для нашей карты 54º40′).

Для определения долготы заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайший меридиан (для нашей карты 18º00′);
  • не меняя раствор циркуля-измерителя установить его на ближайшую горизонтальную рамку с минутными и секундными делениями (для нашей карты нижнюю рамку), одна ножка должна быть на ближайшем меридиане (для нашей карты 18º00′), а другая - между 10-секундными точками на горизонтальной рамке;
  • посчитать количество минут и секунд от западного (левого) меридиана до второй ножки циркуля-измерителя;
  • добавить полученный результат к долготе западного меридиана (для нашей карты 18º00′).

Обратите внимание на то, что данный способ определения долготы заданной точки для карт масштаба 1:50 000 и мельче имеет погрешность за счет схождения меридианов, ограничивающих топографическую карту с востока и запада. Северная сторона рамки будет короче, чем южная. Следовательно, расхождения между измерениями долготы на северной и южной рамке могут отличаться на несколько секунд. Чтобы добиться высокой точности в результатах измерений необходимо определить долготу и по южной и по северной стороне рамки, а затем произвести интерполяцию.
Для повышения точности определения географических координат можно использовать графический метод . Для этого необходимо соединить прямыми линиями ближайшие к точке одноименные десятисекундные деления по широте к югу от точки и по долготе к западу от нее. Затем определить размеры отрезков по широте и долготе от прочерченных линий до положения точки и суммировать их соответственно с широтой и долготой прочерченных линий.
Точность определения географических координат по картам масштабов 1: 25 000 - 1: 200 000 составляет 2′′ и 10′′ соответственно.

Вопросы и задания для самоконтроля

  1. Какие плоскости в системе географических координат являются исходными?
  2. Дайте определения «геодезические координаты», «геодезическая широта», «геодезическая долгота».
  3. В каких пределах измеряется геодезическая широта и геодезическая долгота?
  4. Чему равна геодезическая широта точек, расположенных на экваторе и на южном полюсе?

Системы координат, применяемые в топографии: географические, плоские прямоугольные, полярные и биполярные координаты, их сущность и использование

Координатами называются угловые и линейные величины (числа), определяющие положение точки на какой-либо поверхности или в пространстве.

В топографии применяют, такие системы координат, которые позволяют наиболее просто и однозначно определять положение точек земной поверхности как по результатам непосредственных измерений на местности, так и с помощью карт. К числу таких систем относятся географические, плоские прямоугольные, полярные и биполярные координаты.

Географические координаты (рис.1) - угловые величины: широта (У) и долгота (L), определяющие положение объекта на земной поверхности относительно начала координат - точки пересечения начального (Гринвичского) меридиана с экватором. На карте географическая сетка обозначена шкалой на всех сторонах рамки карты. Западная и восточная стороны рамки являются меридианами, а северная и южная - параллелями. В углах листа карты подписаны географические координаты точек пересечения сторон рамки.

Рис. 1. Система географических координат на земной поверхности

В системе географических координат положение любой точки земной поверхности относительно начала координат определяется в угловой мере. За начало у нас и в большинстве других государств принята точка пересечения начального (Гринвичского) меридиана с экватором. Являясь, таким образом, единой для всей нашей планеты, система географических координат удобна для решения задач по определению взаимного положения объектов, расположенных на значительных расстояниях друг от друга.

Поэтому в военном деле эту систему используют главным образом для ведения расчетов, связанных с применением боевых средств дальнего действия, например баллистических ракет, авиации и др.

Плоские прямоугольные координаты (рис. 2) - линейные величины, определяющие положение объекта на плоскости относительно принятого начала координат - пересечение двух взаимно перпендикулярных прямых (координатных осей Х и Y).

В топографии каждая 6-градусная зона имеет свою систему прямоугольных координат. Ось Х - осевой меридиан зоны, ось Y - экватор, а точка пересечения осевого меридиана с экватором - начало координат.

Рис. 2. Система плоских прямоугольных координат на картах

Система плоских прямоугольных координат является зональной; она установлена для каждой шестиградусной зоны, на которые делится поверхность Земли при изображении ее ни картах в проекции Гаусса, и предназначена для указания положения изображений точек земной поверхности на плоскости (карте) в этой проекции.

Началом координат в зоне является точка пересечения осевого меридиана с экватором, относительно которой и определяется в линейной мере положение всех остальных точек зоны. Начало координат зоны и ее координатные оси занимают строго определенное положение на земной поверхности. Поэтому система плоских прямоугольных координат каждой зоны связана как с системами координат всех остальных зон, так и с системой географических координат.

Применение линейных величин для определения положения точек делает систему плоских прямоугольных координат весьма удобной для ведения расчетов как при работе на местности, так и на карте. Поэтому в войсках эта система находит наиболее широкое применение. Прямоугольными координатами указывают положение точек местности, своих боевых порядков и целей, с их помощью определяют взаимное положение объектов в пределах одной координатной зоны или на смежных участках двух зон.

Системы полярных и биполярных координат являются местными системами. В войсковой практике они применяются для определения положения одних точек относительно других на сравнительно небольших участках местности, например при целеуказании, засечке ориентиров и целей, составлении схем местности и др. Эти системы могут быть связаны с системами прямоугольных и географических координат.

Система координат - способ задания точек пространства с помощью чисел . Количество чисел, необходимых для однозначного определения любой точки пространства, определяет его размерность. Обязательным элементом системы координат является начало координат - точка, от которой ведется отсчет расстояний. Другим обязательным элементом является единица длины, которая позволяет отсчитывать расстояния. Все точки одномерного пространства можно задать при выбранном начала координат одним числом. Для двумерного пространства необходимы два числа, для трехмерного - три. Эти числа называются координатами.


1. История

Развитие систем координат в истории человечества связан как с математическими задачами, так и с практическими проблемами искусства навигации , опиравшейся на картографию и астрономию . Известную систему координат, прямоугольную, предложил Рене Декарт в году. Понятие о полярную систему координат в европейской математике сложилось примерно в эти времена, но первые увляння о ней существовали еще в Древней Греции , в в средневековых арабских математиков, которые разрабатывали методы расчета направлении Каабу .

Становление понятия систем координат привело к развитию новых разделов геометрии: аналитической , проективной , начертательной .


2. Декартова система координат

Наиболее распространенной системой координат в математике есть декартова система координат , названная так в честь Рене Декарта . Декартова система координат задается началом координат и тремя векторами , которые определяют направление координатных осей . Каждая точка пространства задается числами, доринюють расстоянии от данной точки до координатных плоскостей.

Координаты декартовой системы на полощини принято обозначать , В пространстве .

Различные декартовы системы координат связаны между собой аффинные преобразования : смещением и поворотами.


3. Криволинейные системы координат

Исходя из декартовой системы координат, можно определить криволину систему координат, то есть, например, для трехмерного пространства числа , Связанных с декартовыми координатами спивидношеннямы:

,

где все функции однозначны и непрерывно дифференцированные, причем якобиан :

.

Примером криволинейной системы координат на плоскости является полярная система координат , в которой положение точки задается двумя числами: расстоянием между точкой и началом координат, и углом между лучом, который соединяет начало координат с точкой и выбранной осью. Декартовы и полярные координаты точки связаны между собой формулами:

, ,

Для трехмерного пространства популярные цилиндрическая и сферическая системы координат . Так, положение самолета в пространстве можно задать тремя числами: высотой, расстоянием до точки на поверхности Земли, над которой он пролетает, и углом между направлением на самолет и направлением на север. Такое задание соответствует цилиндрической системе координат, Альтернативно, положения самолета можно задать расстоянием до него и двумя углами: полярным и азимутальные. Такое задание соответствует сферической системе координат.

Разнообразие систем координат не исчерпывается приведенными. Существует очень много криволинейных систем координат, удобных для использования при решении той или иной математической задачи.


3.1. Свойства

Каждое из уравнений , Задает координатную плоскость. Пересечение двух координатных плоскостей с различными i задает координатную линию. Каждая точка пространства определяется пересечением трех координатных плоскостей.

Важными характеристиками криволинейных систем координат является длина элемента дуги и элемента объема в них. Эти величины используются при интегрировании. Длина элемента дуги задается квадратичной формой:

,

Являются компонентами метрического тензора .

Элемент объема равен в криволинейной системе координат

.

Квадрат якобиана равен детерминанту от метрического тензора:

.

Система координат называется правой, если касаются координатных линий, направлены в сторону роста соответствующих координат, образуют правую тройку векторов .

При описании векторов в криволинейной системе координат удобно пользоваться локальным базизом, определенным в каждой точке.


4. В географии


6. В физике

Описуюючы движение физических тел , физика использует понятие