Введение

1. аналитический обзор

2. Технологическая часть

2.4.1 Очистка подложки

2.4.2 Термическое окисление

2.4.4 Ионная имплантация

2.4.5 Металлизация

2.4.6 Межслойная изоляция

3. инженерно - экономические расчеты

Заключение

Введение

Технология интегральных схем, развиваясь исключительно быстрыми темпами, достигла немыслимых успехов. Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника). В настоящее время она играет определяющую роль в совершенствовании практически всех отраслях народного хозяйства (интегральные схемы используются в компьютерах, системах автоматизированного проектирования, промышленных роботах, средствах связи и пр.).

Применяемые при изготовлении полупроводниковых интегральных микросхем (ИМС) технологические процессы носят групповой характер, т.е. одновременно изготавливается большое количество ИМС. Многие технологические операции позволяют осуществить обработку до 200 пластин, что позволяет одновременно изготовить свыше миллиона электронных приборов.

Для реализации больших возможностей планарной технологии необходимо выполнение немалого числа общих требований производства и определенных технологических условий, обеспечивающих получение образцов полуфабрикатов высокого качества на всех технологических этапах. А это невозможно без применения особо чистых основных и вспомогательных материалов, выделяемых в специальный класс «для полупроводникового производства», точного технологического и контрольного оборудования, производственных помещений, удовлетворяющим столь высоким требованиям технологической гигиены, какие не встречаются ни в каких других отраслях.

Целью данного проекта является изучение современных технологических приемов в производстве изделий твердотельной электроники и разработка сквозного технологического процесса изготовления МДП-транзистора с диодом Шоттки.

транзистор интегральный схема

1. Аналитический обзор

Полевой транзистор с изолированным затвором - это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Полевой транзистор с изолированным затвором состоит из пластины полупроводника (подложки) с относительно высоким удельным сопротивлением, в которой созданы две области с противоположным типом электропроводности). На эти области нанесены металлические электроды - исток и сток. Поверхность полупроводника между истоком и стоком покрыта тонким слоем диэлектрика (обычно слоем оксида кремния). На слой диэлектрика нанесен металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника (рисунок 1). Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл-оксид (окисел)-полупроводник).

Рисунок 1 - Топология и основные элементы МОП-транзистора

Технология изготовление МОП-ИМС занимает доминирующее положение среди процессов изготовления полупроводниковых ИМС. Это объясняется тем, что ИМС на МОП-транзисторах составляют значительную часть основных изделий микроэлектроники различного функционального назначения. Благодаря высокой надежности и большой функциональной сложности МОП-ИМС имеют меньшие геометрические размеры, чем ИМС на биполярных транзисторах. Технология изготовления кристаллов МОП-ИМС во многом схожа с технологией биполярных ИМС. Отличие при этом обусловлено рядом конструктивно-технологических особенностей самих МОП-ИМС.

Различают МОП-транзисторы со встроенным и индуцированным каналом :

· В МОП-транзисторах со встроенным каналом есть специальный встроенный канал, проводимость которого модулируется смещением на затворе. В случае канала p типа положительный канал отталкивает дырки из канала (режим обеднения), а отрицательный притягивает (режим обогащения). Соответственно проводимость канала либо уменьшается, либо увеличивается по сравнению с ее значением при нулевом смещении.

· МОП-транзисторах с индуцированным каналом проводящий канал возникает между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при p-канале и положительного при n-канале). Это напряжение называют пороговым.

Первыми в промышленном производстве были p-МОП-ИМС, т.к. изготовление n-МОП-ИМС затруднялось возникновением на поверхности p-Si при термическом оксидировании инверсного n-слоя, который электрически связывает элементы ИМС. Но в настоящее время в производстве преобладают n-канальные ИМС .

Транзисторы с электронной проводимостью канала имеют лучшие характеристики, так как подвижность электронов в кремнии значительно превышает подвижность дырок.

МДП-ИМС изготавливают по планарной технологии. Наиболее ответственные моменты в технологическом процессе это: создание подзатворного диэлектрика, точное совмещение затвора с каналом и получение структур с малой длиной канала.

Для полевого транзистора с изолированным затвором возможно его сочетание с диодом Шоттки. Диод Шоттки в интегральном исполнении представляет собой контакт полупроводник - металл, на котором образуется так называемый барьер Шоттки. Переходам такого типа, выполненных с учетом определенных требований, присущи такие эффекты как несимметрия вольт-амперной характеристики и наличие барьерной емкости. Для получения подобных переходов металл, наносимый в качестве электрода на поверхность электронного полупроводника, должен иметь работу выхода, меньшую работы выхода полупроводника; для электрода, наносимого на поверхность дырочного полупроводника, требуется металл с большей работой выхода (рисунок 2) .

Рисунок 2 - Зонная диаграмма образования бартера Шоттки в месте контакта металла и полупроводника p-типа

В этом случае в полупроводнике на границе с металлом образуется обогащенный основными носителями слой, обеспечивающий высокую проводимость перехода независимо от направления тока.

В целом, изготовление МДП-транзистора с диодом Шоттки не требует введения дополнительных технологических операций.

2. Технологическая часть

2.1 Описание технологического процесса

Рисунок 3 - Последовательность технологических операций производства МОП-транзистора с диодом Шоттки

В исходную пластину методом ионной имплантации внедряются бор для получения подложки p-типа (рисунок 3, а).

После этого с помощью фотолитографии и ионной имплантации фосфора формируются области с повышенным содержанием доноров (рисунок 3, в-е).

В последствии выращивается дополнительный слой диоксида кремния. Так как температура на этой стадии высокая, то примеси фосфора в течение этой операции более равномерно распределяются в толще приповерхностного слоя подложки (рисунок 3, ж).

С помощью очередной фотолитографии удаляем оксид кремния в области, разделяющей сток и исток будущего транзистора (рисунок 3, з).

Теперь самая ответственная во всем цикле производства операция - выращивание подзатворного диэлектрика (рисунок 3, и).

Теперь остается сформировать электроды стока, истока и затвора, а также переход Шоттки. Сейчас упрощенно покажем эту металлизацию (рисунок 3, к-м), а далее более подробно рассмотрим принципы ее формирования (раздел 2.4.5).

2.2 Выбор класса производственных помещений

За основу современных требований по классам чистоты чистых помещений и чистых зон берутся нормы, определенные в Федеральном стандарте США FS209E . Подготовленный проект Российского стандарта гармонизован с этим стандартом США.

Критерий чистоты - это отсутствие или минимальное число частиц загрязнений, которые находясь на поверхности пластины могут вызывать либо дефекты в выращиваемых слоях, либо становиться причиной коротких замыканий соседних близко расположенных элементов ИС.

Таблица 1- Классы чистоты по взвешенным в воздухе частицам для чистых помещений

Класс чистоты

Предельно допустимая счетная концентрация частиц N (шт/м 3) размером равным и превышающим (мкм)

Класс 1 ISO

Класс 2 ISO

Класс 3 ISO

Класс 4 ISO

Класс 5 ISO

Класс 6 ISO

Класс 7 ISO

Класс 8 ISO

Класс 9 ISO

Количественный критерий - критический размер частиц - одна треть от минимального геометрического горизонтального размера элемента ИС:

Таким образом, можно выбирать чистое помещение, соответствующее классам чистоты от ISO 1 до ISO 6. Ориентируясь также на стоимость, выбираем класс чистоты ISO 2, для которого максимально допустимая концентрация взвешенных в воздухе частиц, равных или больших чем рассматриваемый размер 0,2 мкм (число частиц в 1м 3 воздуха) составляет:

где N - номер класса чистоты ISO; D - рассматриваемый размер частиц, мкм.

2.3 Основные материалы и реактивы

В течение многих лет основным полупроводниковым материалом, который используется для изготовления интегральных схем, остается монокристаллический кремний. Пластины кремния являются той основой, в поверхностных слоях которой создаются полупроводниковые области с заданными электрофизическими характеристиками. На поверхности кремния формируются диэлектрические слои окислением самого полупроводникового материала или нанесением диэлектриков из внешних источников; образуются структуры многослойной металлизации, защитные, стабилизирующие слои и так далее. Требования к пластинам кремния детально отработаны, существует целый каталог международных стандартов ассоциации SEMI, в то же время продолжается постоянное повышение требований к кремнию, что связано с постоянным стремлением к снижению себестоимости конечного продукта - интегральных схем.

Ниже приведены некоторые геометрические характеристики пластин кремния в соответствии с техническими условиями ЕТО.035.124ТУ, ЕТО.035.206ТУ, ЕТО.035.217ТУ, ЕТО.035.240ТУ, ЕТО.035.578ТУ, ПБЦО.032.015ТУ .

Диаметр пластины 100мм.

Ориентация кремниевой подложки (100) имеет преимущество по сравнению с (111), заключающееся с более высокой подвижности электронов, обусловленной низкой плотностью поверхностных состояний на границе кремний-диэлектрик.

Толщина пластины 500 мкм.

Разброс значений толщины в партии ±10 мкм.

Разброс значений толщины по пластине ±12 мкм.

Прогиб 20 мкм.

Отклонение от плоскостности ±5 мкм.

Количество светящихся точек, менее 10

Высокие требования по примесям и механическим частицам предъявляются к деионизованной воде. В таблице 2 приведены выписки из руководящего материала международной ассоциации SEMI с указанием рекомендуемых параметров сверхчистой воды для производства полупроводниковых интегральных схем с минимальным размером элемента 0,8-1,2 мкм. Соответствующая индексация жидких реагентов по стандартам SEMI записывается как SEMI C7.

Значение параметра удельного электрического сопротивления воды должно быть близко к теоретической величине 18,2 МОм·см.

Кроме параметров, указанных в таблице, в рекомендациях SEMI приведены данные по наличию следов ряда металлов в воде. Анализ проводится на содержание следующих металлов: Li, Na, K, Mg, Ca, Sr, Ba, B, Al, Cr, Mn, Fe, Ni, Cu, Zn, Pb.

Для воды градации SEMI C7 для всех без исключения указанных элементов допустимая концентрация следов лежит в пределах от 0,001 до 0,005 ppb.

Уровень чистоты жидких химических реактивов, применяемых в производстве интегральных схем, определяется серией международных стандартов и имеет различные градации в соответствии с уровнем сложности интегральных схем.

«Grade 2» имеет обозначение стандарта, начинающееся с символов SEMI C7. Реактивы, имеющие уровень чистоты «Grade 2», используются при изготовлении интегральных схем с проектными нормами в диапазоне 0,8-1,2 мкм, что соответствует требованию задания. В реактивах градации «Grade 2» контролируются посторонние частицы размером 0,5 мкм и выше. Практически во всей номенклатуре реактивов максимальная норма - 25 частиц в 1 мл реактива. В спецификациях на такие реактивы содержание следов металлов указывается 5-10 ppb.

Помимо стандартов для химических реактивов повышенной чистоты разработаны спецификации в виде руководящих материалов.

В соответствии с ними сформированы три уровня (яруса) требований к чистоте: A, B, C (в английском написании - Tier A, Tier B, Tier C). Уровню А соответствуют требования стандарта SEMI C7. Соответственно, реактивы для данного технологического процесса должны отвечать Tier A (ярус A).

В технологии изготовления интегральных схем исключительную роль играют газы. Практически все технологические процессы проходят в газовой среде и проблема создания производства полупроводниковых приборов «без загрязнений» - это в большой степени проблема чистоты газов. Различают два типа газовых сред: газы - носители и газы химических реакций в технологических процессах. Парциальное давление газов-носителей, как правило, высокое, в связи с чем их чистота с учетом высокой концентрации в рабочей газовой среде особенно критична в технологии.

Таблица 3 - Газы в технологических процессах изготовления ИС

Наименование

Химическая формула

533 (из них 500 ppm - водород H 2)

Треххлористый бор

99,9995 (по весу в жидкой фазе)

5 (по весу в жидкой фазе)

Трифторид бора

0,94% - газы не растворимые в воде, 200 ppm - SiF 4 . Остальные примеси - 28 ppm.

Четырехфтористый углерод

30, в т. ч. 20 - N 2 , 5 - O 2

1012, из них

300 - B 4 H 10 - тетраборан

Дихлорсилан

Основные примеси - другие хлорсиланы в жидкой фазе

Гексафторэтан

Хлористый водород

Фтористый ангидрид

525, в т. ч. 200 - водяные пары по объему

Трифторид азота

1000, в т. ч. CF 4 - 500, CO - 130, N 2 -100, O 2 - 100

Закись азота

26, в т. ч. 10 - N 2

Кислород

181, в т. ч. 100 - H 2 , 50 - N 2

Моносилан

Четыреххлористый кремний

Основные примеси: SiH 2 Cl 2 - 0,2% в жидкой фазе, SiHCl 3 - 0,2% в жидкой фазе

Гексафторид серы

209, в т. ч. 100 - CF 4

Гексафторид вольфрама

39, в т. ч. 20 - HF

Трифторид хлора

2.4 Основные технологические операции

2.4.1 Очистка подложки

Понятно, что на любой подложке в каком-то количестве присутствуют загрязнения. Это могут быть частицы пыли, молекулы различных веществ, как неорганических, так и органических. Пылеобразные частицы удаляются либо механической кистевой, либо ультразвуковой отмывкой. Применяются методы с использованием центробежных струй. Процедура химической очистки обычно проводится после ликвидации неорганических молекул и атомов, и заключается в удалении органических загрязнений.

Обычная процедура очистки выполняется в смеси H 2 O-H 2 O 2 -NH 4 OH, которая обеспечивает удаление органических соединений за счет сольватирующего действия гидроксида аммония и окисляющего действия перекиси водорода. Для удаления тяжелых металлов используют раствор H 2 O-H 2 O 2 -HCl. Подобная очистка подложек проводится при температуре ~80?С в течение 10-20 минут, после чего осуществляется их отмывка и сушка.

2.4.2 Термическое окисление

Под окислением полупроводников понимают процесс их взаимодействия с окисляющими агентами: кислородом, водой, озоном и т.д.

Слой двуокиси кремния формируется обычно на кремниевой пластине за счет химического взаимодействия в приповерхностной области полупроводника атомов кремния и кислорода. Кислород содержится в окислительной среде, с которой контактирует поверхность кремниевой подложки, нагретой в печи до температуры 900 - 1200 °С. Окислительной средой может быть сухой или влажный кислород. Схематично вид установки показан на рисунке 4 (в современных установках пластины в подложкодержателе располагаются вертикально).

Рисунок 4-Схема установки процесса термического окисления

Требования к оборудованию:

1) контролируемая с точностью до 1 градуса температура подложкодержателя;

2) обеспечение плавного повышения и понижения температуры в реакторе (двухстадийный нагрев);

3) отсутствие посторонних частиц в реакторе (подложкодержатель сначала вводится в трубу реактора, а затем опускается на дно);

4) отсутствие посторонних примесей, в частности, ионов натрия на внутренней поверхности реактора (с целью их удаления проводится предварительная продувка трубы реактора хлором);

5) обеспечение введения кремниевых пластин в реактор сразу после их химической очистки.

Химическая реакция, идущая на поверхности кремниевой пластины, соответствует одному из следующих уравнений:

· окисление в атмосфере сухого кислорода (сухое окисление): Si ТВ + O 2 = SiO 2 ;

· окисление в парах воды (влажное окисление): Si ТВ +2H 2 O = SiO 2 + 2H 2 ;

· термическое окисление в присутствии хлора (хлорное окисление);

· окисление в парах воды при повышенных температуре и давлении (гидротермальное окисление).

При одной и той же температуре коэффициент диффузии воды в диоксиде кремния существенно выше коэффициента диффузии кислорода. Этим объясняются высокие скорости роста оксида во влажном кислороде. Выращивание пленок только во влажном кислороде не применяется из-за плохого качества оксида. Более качественные пленки получаются в сухом кислороде, но скорость их роста слишком мала.

Для маскирования при локальных обработках оксидирование ведут в режиме сухой-влажный-сухой кислород. Для формирования подзатворного диэлектрика МОП-структур применяют сухой кислород, т.к. пленки получаются более качественные.

2.4.3 Литографические процессы

Основное назначение литографии при изготовлении структур микросхем - получение на поверхности пластин контактных масок с окнами, соответствующими топологии формируемых технологических слоев, и дальнейшая передача топологии (рисунка) с маски на материал данного слоя. Литография представляет собой сложный технологический процесс, основанный на использовании явлений, происходящих в резистах при актиничном облучении.

Резисты, растворимость которых в проявителе увеличивается после облучения, называются позитивными. Негативные резисты после облучения становятся практически нерастворимыми в проявителе.

Стандартно в электронной промышленности применяется оптическая литография - фотолитография (рисунок 5), - для которой применяют фоторезисты, чувствительные к актиничному излучению с длиной волны от 200 до 450 нм. Фоторезисты представляют собой сложные полимерные композиции, в составе которых имеются фоточувствительные и пленкообразующие компоненты, растворители и специальные добавки.

В проекте используется позитивный высококачественный и стабильный фоторезист ФП-20Ф, предназначенный для реализации контактных и проекционных фотолитографических процессов в производстве полупроводниковых приборов и интегральных схем. В соответствии с этим для травления можно применять слабый водный раствор KOH или NaOH.

Наиболее оптимальный способ нанесения фоторезиста - центрифугирование. Подложка закрепляется на горизонтальной центрифуге. На подложку наносится 1-5 мл фоторезиста (в зависимости от размеров подложки). Центрифуга приводится во вращение до скорости 1000-3000 об/мин (в зависимости от марки фоторезиста). Вращение продолжается 1-2 мин до формирования пленки фоторезиста, растворитель при этом испаряется.

Рисунок 5 - Схема основных операций фотолитографического процесса

Существует несколько способов экспонирования, в проекте будем использовать бесконтактный (рисунок 6). Проекционная печать позволяет полностью исключить повреждения поверхности шаблона. Изображение топологического рисунка шаблона проецируется на покрытую резистом пластинку, которая расположена на расстоянии нескольких сантиметров от шаблона.

1- источник света; 2- оптическая система; 3- шаблон;

4- фоторезист; 5- кремниевая пластина.

Рисунок 6- Схема проекционной печати

Для достижения высокого разрешения отображается только небольшая часть рисунка шаблона. Это небольшая отражаемая область сканируется или перемещается по поверхности пластины. В сканирующих проекционных устройствах печати шаблон и пластина синхронно перемещаются.

При сушке фоторезиста очень важно подобрать нужные температуру и время. Сушка фоторезиста будет осуществляться наиболее распространенным способом - ИК-излучением. При этом растворитель удаляется равномерно по толщине слоя резиста и не происходит его уплотнения, а время сушки понижается до нескольких минут.

2.4.4 Ионная имплантация

Легирование полупроводниковых материалов с целью получения заданных электрофизических параметров слоев при формировании определенной геометрической структуры ИС остается важнейшей технологической задачей. Существует два вида легирования: диффузионное (включает в себя стадии загонки примеси и последующей разгонки) и ионное.

Наиболее распространенным является ионная имплантация (ионное легирование) как процесс внедрения в мишень ионизованных атомов с энергией, достаточной для проникновения в ее приповерхностные области (рисунок 7). Этот способ отличается универсальностью (можно вводить любые примеси в любое твердое тело), чистотой и точностью процесса легирования (практически исключается попадание неконтролируемых примесей) и низкими температурами процесса.

1 - источник ионов; 2 - масс-спектрометр; 3 - диафрагма; 4 - источник высокого напряжения; 5 - ускоряющая трубка; 6 - линзы; 7 - источник питания линз; 8 - система отклонения луча по вертикали и система отключения луча; 9 - система отклонения луча по горизонтали; 10 - мишень для поглощения нейтральных частиц; 11 - подложка.

Рисунок 7 - Схема установки ионного легирования

При ионной имплантации проявляется ряд нежелательных эффектов, таких как эффект каналирования, аморфизация приповерхностного слоя подложки, образование радиационных дефектов.

Эффект каналирования наблюдается при попадании иона в свободное пространство между рядами атомов. Такой ион постепенно теряет энергию за счет слабых скользящих столкновений со стенками канала и, в конце концов, покидает эту область. Расстояние, проходимое ионом в канале, может в несколько раз превышать длину пробега иона в аморфной мишени, а значит профиль распределения примеси получается неравномерным.

При внедрении ионов в кремниевую кристаллическую подложку они подвергаются электронным и ядерным столкновениям, однако, только ядерные взаимодействия приводят к смещению атомов кремния. Легкие и тяжелые ионы по-разному взаимодействуют с подложкой.

Легкие ионы при внедрении в мишень первоначально испытывают в основном электронное торможение. На профиле распределения смещенных атомов по глубине подложки существует скрытый максимум концентрации. При внедрении тяжелых ионов они сразу начинают сильно тормозиться атомами кремния.

Тяжелые ионы смещают большое количество атомов мишени из узлов кристаллической решетки вблизи поверхности подложки. На окончательном профиле распределение плотности радиационных дефектов, который повторяет распределение длин пробега выбитых атомов кремния, существует широкий скрытый пик. Например, легкие ионы 11 B испытывают в основном электронное торможение, тяжелые ионы 31 P или 75 As - тормозятся атомами кремния.

В связи с этим после проведения ионного легирования необходимо провести постимплантационный отжиг, чтобы восстановить приповерхностную область мишени.

Области стока и истока будем формировать внедрением фосфора, а для получения подложки p-типа исходную подложку будем легировать бором.

2.4.5 Металлизация

Металлизация завершает процесс формирования полупроводниковых структур. Для каждой ИМС металлизацию желательно выполнять из одного материала. Процесс металлизации заключается в реализации межкомпонентных соединений с низким сопротивлением и создании контактов с низким сопротивлением к высоколегированным областям p- и n-типа и слоям поликристаллического кремния.

Согласно заданию на курсовой проект необходимо сформировать 3 слоя металлизации. Такая металлизация полнее отвечает предъявляемым требованиям, но менее технологична, т.к. содержит не один слой металла.

В качестве первого слоя металлизации на оксиде чаще всего используют тугоплавкие металлы, особенно молибден и ванадий. Имя большую проводимость, чем другие тугоплавкие металлы, они отличаются высокой стабильностью, хорошей адгезией, легко травятся при фотолитографии. Должны обладать малой растворимостью в материале подложки и создавать хороший омический контакт с полупроводником, небольшим пороговым напряжением. Вторым слоем обычно служит алюминий, а в особо ответственных устройствах - золото. Он должен быть высокопроводящим.

Последний по порядку нанесения слой металлизации, называемый проводящим слоем, должен иметь хорошую электропроводность и обеспечивать качественное подсоединение контактных площадок к выводам корпуса. Для проводящих слоев применяются медь, алюминий, золото.

Существует множество методов получения металлических пленок. Получение качественных незагрязненных пленок методом термовакуумного напыления сложно. Пленки алюминия, полученные термовакуумным испарением, обладают большой неравномерностью размеров зерен и высоко концентрацией внутри зерен. Их последующая термообработка приводит к миграции атомов металла и скоплению их вокруг крупных частиц с образованием высоких бугорков. Получение рисунков на таких пленках фотолитографией приводит к большим неровностям краев вследствие анизотропии травления по границам зерен. Поэтому для получения линий металлизации очень малой ширины отказываются от термовакуумных процессов . Способ химического осаждения пленок из парогазовой смеси чаще применяется в лабораторных условиях. Электронно-лучевое несмотря на то, что усложняет конструкцию установки, позволяют снизить загрязнение пленок и повысить производительность процесса (рисунок 8). Оптимальная скорость роста пленки составляет 0.5 мкм/мин. С помощью данного метода наносят пленки алюминия и его сплавов, а также Si, Pd, Au, Ti, Mo, Pt, W.

Рисунок 8 - Схема процесса электронно-лучевого испарения

К преимуществам электронно-лучевого испарения относятся:

· возможность использования больших по массе источников (не требуется перезагрузка при нанесении толстых пленок);

· возможность последовательного нанесения различных пленок из соседних источников, расположенных в одной камере;

· высокая скорость роста пленок;

· возможность напыления тугоплавких материалов.

Барьер Шоттки по выполняемым функциям не относится к металлизации, но по технологии формирования его можно отнести к металлизации, т.к. она аналогична получению омических контактов к активным областям. Важнейшим этапом формирования барьеров Шоттки является выбор пары металл - полупроводник и оптимальных режимов.

Итак, для контактного слоя применим силицид платины, который будет нанесен методом электронно-лучевого испарения путем совместного испарения из двух источников. Барьер Шоттки обеспечит сплав титана и вольфрама, нанесенный на кремний тем же методом. По сути, этот сплав будет аналогичен сильнолегированной области. Для проводящего слоя применим алюминий, также нанесенный методом электронно-лучевого испарения.

2.4.6 Межслойная изоляция

Многоуровневая металлизация применяется для БИС и СБИС. Увеличение числа элементов увеличивает и площадь межэлементных соединений, поэтому их размещают в несколько уровней, разделенных изолирующими слоями и соединенными между собой в нужных местах.

Изолирующие диэлектрические пленки должны иметь высокое напряжение пробоя, низкие диэлектрическую постоянную и потери, минимальное химическое взаимодействие с прилегающими пленками, низкий уровень механических напряжений, низкую плотность связанного электрического заряда, высокую химическую стабильность и технологичность при получении пленок и создании рисунка. Недопустимым является наличие сквозных микроотверстий, которые могут привести к короткому замыканию между слоями металлизации.

Технология многоуровневой металлизации включает формирование первого уровня металлизации, получение изолирующего слоя с последующим вскрытием межуровневых контактных окон, формирование второго слоя металлизации и т.д.

Многие серийно выпускаемые ИМС изготавливаются на основе алюминиевой металлизации с изолирующими слоями SiO 2 . Пленки диоксида кремния могут осаждаться как с легирующими добавками, так и без них. Важнейший параметр при осаждении SiO 2 - воспроизводимость рельефа (рисунок 9).

Рисунок 9-Конформное воспроизведение. Толщина пленки на стенках ступеньки не отличается от толщины на дне и поверхности. Обусловлено быстрой поверхностной миграцией

В данном проекте в качестве изолирующей пленки между многоуровневой металлизацией используется нелегированный диоксид кремния, наносимый методом химического осаждения из газовой фазы (рисунок 10). Последний основан на использовании явления пиролиза или химических реакций при формировании пленок изолирующего материала.

Рисунок 10 - Установка формирования пленок методом химического осаждения из газовой фазы при нормальном давлении

В качестве химически активного газа применяют моносилан SiH 4 и кислород, а в качестве буферного газа - азот.

SiH 4 + O 2 > SiO 2 + 2H 2

Такой процесс является самым низкотемпературным для получения качественных диэлектрических слоев SiO 2 (реакцию проводят в диапазоне температур 200-400?С). Недостатком является горючесть и взрывоопасность силана. Пленки формируются очень чистыми, но из-за низких температур получаются неплотными. Во избежание этого нужно строго регулировать концентрацию силана в газовой фазе и подавать его непосредственно на поверхности пластин, предотвращая рост SiO 2 в газовой фазе .

3. нженерно-экономические расчеты

Тема проекта: Разработка технологического процесса изготовления полупроводниковых интегральных схем

Тип технологии: МОП транзистор с диодом Шоттки

Материал подложки: Si

Исходные данные по проекту:

Размер кристалла (чипа) 10х1 0 мм 2

Минимальная проектная норма элемента ИС 0,3мкм

Плотность дефектов на слой 0,1деф/см 2

Число слоев металлизации 1

Вычисление процента выхода годных структур на пластине (Y) производится по следующей формуле:

где D 0 - удельная плотность дефектов, приходящихся на одну фотолитографию, деф/см 2 ; A - активная площадь кристалла, см 2 ; F - число фотолитографических процессов в полном технологическом цикле изготовления ИС.

Расчет общего объема выпуска годных изделий проводится по исходным данным. Выход годных структур на пластине: ,

где A пл - активная площадь пластины диаметром 100 мм, A - площадь элемента, см 2 .

Годовой объем производства при запуске Z=300 пластин в сутки при условии, что процент выхода годных изделий на сборочных операциях W=95%:

Таблица. Расчет порогового напряжения МОП транзистора.

1 10 16 => 1 10 22 м -3

1,5 = 1,5 10 -6 м

40 => 4 10 -8 м

1,5 = 1,5 10 -6 м

1,5 => 1,5 10 -6 м

16 => 1,6 10 -5 м

8.85 10 -12 Ф/м 2

8,6 10 -4 Ф/м

где, - поверхностный потенциал.

где,- падение напряжения на слое оксида.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе рассмотрена технология изготовления плат полупроводниковых интегральных микросхем. Полупроводниковая интегральная микросхема - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники. Размеры кристаллов у современных полупроводниковых интегральных микросхем достигают мм 2 , чем больше площадь кристалла, тем более многоэлементную ИС можно на ней разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

При использовании другого типа подзатворного диэлектрика, других металлов при формировании контактов с кремнием, других изолирующих слоев возможно получение более сложных схем с еще меньшим размером элементов.

Список использованных источников

1. Ежовский Ю.К. Основы тонкопленочного материаловедения и технологии интегральных устройств: Учебное пособие/ СПбГТИ.- СПб., 2005.-127с.

2. Интегральные устройства радиоэлектроники УМК, СЗТУ, СПб 2009

3. Малышева И.А. Технология производства интегральных микросхем: Учебник для техникумов.- М.: Радио и связь., 1991. - 344с.

4. http :// www . karelia . ru , Гуртов В.А. Твердотельная электроника: Учебное пособие. -Петрозаводск., 2005.-405с.

5. Цветов В.П. Технология материалов и изделий твердотельной электроники: Методические указания/ СПбГТИ.- СПб.,1998.-67с.

6. http://www.analog.energomera.ru, Пластины кремния монокристаллического.

7. http :// www . karelia . ru , Курс лекций по дисциплине «Технология сбис».

Подобные документы

    Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов.

    курсовая работа , добавлен 03.12.2010

    Устройство и принцип действия биполярных транзисторов. Структура и технология изготовления полупроводниковых интегральных микросхем на основе биполярного транзистора с помощью метода диэлектрической изоляции; подготовка полупроводниковой подложки.

    контрольная работа , добавлен 10.06.2013

    Описание и анализ конструкции диффузионного резистора. Оптимизация его конструкции с учетом критерия минимальной площади. Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых интегральных микросхем.

    курсовая работа , добавлен 20.11.2013

    Схемотехнические параметры. Конструктивно–технологические данные. Классификация интегральных микросхем и их сравнение. Краткая характеристика полупроводниковых интегральных микросхем. Расчёт полупроводниковых резисторов, общие сведения об изготовлении.

    курсовая работа , добавлен 13.01.2009

    Принцип действия полупроводниковых диодов, свойства p-n перехода, диффузия и образование запирающего слоя. Применение диодов в качестве выпрямителей тока, свойства и применение транзисторов. Классификация и технология изготовления интегральных микросхем.

    презентация , добавлен 29.05.2010

    Этапы проектирование полупроводниковых интегральных микросхем. Составление фрагментов топологии заданного уровня. Минимизация тепловой обратной связи в кристалле. Основные достоинства использования ЭВМ при проектировании топологии микросхем и микросборок.

    презентация , добавлен 29.11.2013

    Исследование принципа действия биполярного транзистора. Конструирование и расчет параметров диффузионных резисторов. Классификация изделий микроэлектроники, микросхем по уровням интеграции. Характеристика основных свойств полупроводниковых материалов.

    дипломная работа , добавлен 20.06.2012

    Краткая историческая справка о развитии интегральных схем. Американские и советские ученные, которые внесли огромный вклад в разработку и дальнейшее развитие интегральных схем. Заказчики и потребители первых разработок микроэлектроники и ТС Р12-2.

    реферат , добавлен 26.01.2013

    Изучение современных тенденций в области проектирования интегральных микросхем и полупроводниковых приборов. Анализ алгоритма создания интегральных микросхем в среде Cadence Virtuoso. Реализация логических элементов с использованием NMOS-транзисторов.

    курсовая работа , добавлен 08.11.2013

    Маршрут изготовления биполярных интегральных микросхем. Разработка интегральной микросхемы методом вертикального анизотропного травления с изоляцией диэлектриком и воздушной прослойкой. Комплекс химической обработки "Кубок", устройство и принцип работы.

Подготовка пластин кремния.

· Получение металлургического и электронного кремния

· Получение кремния методом зонной плавки

· Выращивание кремния по методу Чохральского

· Механическая обработка слитка.

o отделение затравочной и хвостовой части слитка;

o обдирка боковой поверхности до нужной толщины;

o шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации);

o резка алмазными пилами слитка на пластины

o шлифовка. На абразивном материале SiC или Al 2 O 3 удаляются повреждения высотой более 10 мкм

o полирование. Используют смесь полирующей суспензии (коллоидный раствор частиц SiO 2 размером 10 нм) с водой.

· Травление.

o В смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si .

o Промывка в деионизованной и бидистиллированной воде

В окончательном виде кремний представляет собой пластину диаметром 15 - 40 см, толщиной 0.5 - 0.65 мм с одной зеркальной поверхностью.

Получение металлургического и электронного кремния

Исходным сырьем для большинства изделий микроэлектронной промышленности служит элек­тронный кремний. Первым этапом его получения является изготовление сырья, называемого метал­лургическим кремнием .

Этот технологический этап реализуется с помощью дуговой печи с погруженным в нее элек­тродом. Печь загружается кварцитом SiO 2 и углеродом в виде угля, щепок и кокса. Температура ре­акции Т=1800°С, энергоемкость W = 13 кВт/час печи происходит ряд промежуточных реакций.

Результирующая реакция может быть представлена в виде:

SiC тв + SiO 2 тв Si тв + SiO 2 газ + CO газ

Металлургический кремний со степенью чистоты 98% измельчают и помещают в гидрометаллургическую установку для получения трихлорсилана . Температура реакции Т=300°C.

Si тв +3HCl газ SiHCl 3 газ + H 2 газ + Q

Производство электронного кремния проходит в несколько этапов:

1. Сначала в дуговой печи с погружаемым электродом получают металлургический кремний

SiC тв + SiO 2 Si тв + SiO газ + CO газ

кварцит(SiO 2)+углерод в виде угля, щепок и кокса. температура реакции 1800 °С энергоемкость 13 кВт/ч

Металлургический кремний измельчают в порошок. Вступая в реакцию с безводным хлористым водородом, кремний пе­реходит в трихлорсилан SiHCl 3 Si тв + 3HCl газ SiHCl 3 газ + H 2 газ + теплота

температура реакции 300 °C проходит в присутствии катализаторов

2. Электронный кремний получают из очищенного трихлорсилана путем осаждения из парогазо­вой смеси. Трихлорсилан при температуре Т = 32 °С становится жидкостью. Химическая ре­акция представляет собой реакцию водородного восстановления кремния из трихлорсилана :

2SiHCl 3 газ + 3H 2 газ 2Si тв + 6HCl газ

3. Зародышем будущего слитка служит резистивно нагреваемый кремниевый стержень. Полный цикл осаждения длится много часов. В результате получается стержень поликристаллического по структуре электронного кремния диаметром до 20 см и длиной несколько метров.

Этот процесс используют также для производства поликристаллических кремниевых труб, при­меняемых в качестве держателей и подставок, необходимых при осуществлении высокотемпера­турных обработок.

Технология получения кремния методом зонной плавки

В технологии формирования полупроводниковых соединений применение метода зонной плавки позволяет совместить в од­ном технологическом цикле сразу три операции: синтез, глубокую очистку синтезированного соединения и выращивание из него монокристалла .

Зонная плавка является одним из наиболее эффективных методов глубокой очистки полупроводников. Идея метода связана с различной растворимостью примесей в твердой и жидкой фазах полупроводника. Монокристалл получают из расплава, од­нако, перед началом кристаллизации расплавляется не вся твердая фаза кристалла, а только узкая зона, которая при перемеще­нии вдоль кристалла втягивает в себя примеси.

Различают вертикальную (ВЗП) и горизонтальную (ГЗП) зонные плавки.

В методе ВЗП стержень из поликристаллического кремния удерживается в вертикальном положении и вращается, в то время как расплавленная зона (высотой от 1 до 2 см) медленно проходит от нижней части стержня до его верха, как показано на рисунке.

1 – Держатель 2 - Обмотка нагревателя 3 - Монокристаллический кремний 4 - Затравочный монокристалл 5 – Держатель 6 - Расплавленная зона 7 - Стержень из поликристаллического кремния

Расплавленная область нагревается с помощью высокочастотного индукционного нагре­вателя и перемещается вдоль стержня от затравочного монокристалла. Поскольку боль­шинство примесей обладает хорошей растворимостью в жидкой фазе по сравнению с твер­дой, то по мере продвижения зона плавления все больше насыщается примесями, которые скапливаются на конце слитка. Процесс зонной плавки повторяют несколько раз, а по окон­чании очистки загрязненный конец слитка отрезают.

Для ускорения процесса очистки вдоль контейнера ставят несколько индукторов для образования ряда зон плавления. Теоретически многократная зонная плавка позволяет очень глубоко очистить исходный материал. Однако на практике такого результата достичь невозможно, так как одновременно с очисткой и увеличением числа проходов расплав загрязняется примесями контейнера и окружающей среды.

Выращивание кремния по методу Чохральского

Установка состоит из следующих блоков (см . рис.):

· печь, включающая в себя тигель (8), контейнер для поддержки тигля (14), нагреватель (15), источник питания (12), камеру высокотемпературной зоны (6) и изоляцию (3, 16);

· механизм вытягивания кристалла, включающий в себя стержень с затравкой (5), меха­низм вращения затравки (1) и устройство ее зажима, устройство вращения и подъема тигля (11);

· устройство для управления составом атмосферы (4 - газовый вход, 9 - выхлоп, 10 - ваку­умный насос);

· блок управления, состоящий из микропроцессора, датчиков температуры и диаметра растущего слитка (13, 19) и устройств вв ода;

· дополнительные устройства: смотровое окно - 17, кожух - 2.

Технология процесса

Затравочный монокристалл высокого качества опускается в расплав кремния и одновременно вращается. Получение рас­плавленного поликремния происходит в тигле в инертной атмосфере при температуре, незначительно превосходящей точку плавления кремния Т = 1415 °С. Тигель вращается в направлении противоположном вращению монокристалла для осуществ­ления перемешивания расплава и сведению к минимуму неоднородности распределения температуры.

В начале процесса роста монокристалла часть затравочного монокристалла расплавляется для устранения в нем участков с повышенной плотностью механических напряжений и дефектами. Затем происходит постепенное вытягивание монокристалла из расплава.

Легирование осуществляется введением определенного количества примесей в расплав. Требования к деталям оборудования. Тигель изготавливается из химически инертного, прочного материала с высокой температурой плавления. Обычно используют кварц SiO2, который для уменьшения концентрации кислорода в растущем монокристалле кремния покрывают слоем нитрида кремния. Карбиды кремния или тантала не используют из-за большого содержания углерода, способного проникнуть впослед­ствии в кремний.

Нагрев кремния осуществляют резистивным или индукционным способом. При этом графитовый нагреватель соединяют с источником постоянного напряжения или помещают в переменное электромагнитное поле.

Процесс выращивания кремния происходит в инертной атмосфере или в вакууме. Общий вид оборудования приведен на ри­сунке.

Окончательная обработка кремния

Из установки извлекают кремниевый слиток диаметром 20 - 50 см и длиной до 3 метров. Для по­лучения из него кремниевых пластин заданной ориентации и толщиной в несколько десятых милли­метра производят следующие технологические операции:

1. Механическая обработка слитка:
- отделение затравочной и хвостовой части слитка;
- обдирка боковой поверхности до нужной толщины;
- шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации);
- резка алмазными пилами слитка на пластины: (100) - точно по плоскости (111) - с разориента­цией на несколько градусов.

2. Травление. На абразивном материале SiC или Al 2 O 3 удаляются повреждения высотой более 10 мкм. Затем в смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si .

3. Полирование - получение зеркально гладкой поверхности. Используют смесь полирующей суспензии (коллоидный рас­твор частиц SiO2 размером 10 нм) с водой.

В окончательном виде кремний представляет собой пластину диаметром 15 - 40 см, толщиной 0.5 - 0.65 мм с одной зеркаль­ной поверхностью. Вид пластин с различной ориентацией поверхности и типом проводимости приведен на рисунке:

Эпитаксия.

· Эпитаксия - процесс выращивания тонких монокристаллических слоев на монокристаллических подложках. Материал под­ложки в этом процессе выполняет роль затравочного кристалла.

· Эпитаксия из из газовой фазы

§ Выращивание кремния проводится в потоке парогазовой смеси (силан + водород) при высоких температурах. Для легирова­ния обычно используют гидриды примесных элементов.

§ проводится в вакууме и основана на взаимодействии нескольких молекулярных пучков с нагретой монокристаллической под­ложкой. Сущность процесса состоит в испарении кремния и одной или нескольких легирующих примесей. Низкой давление паров кремния и легирующих примесей гарантирует их конденсацию на относительно холодной подложке. Обычно проводят в сверхвысоком вакууме при давлении 10 -6 - 10 -8 Па. Температурный диапазон составляет 400 - 800 °С.

· Низкая температура процесса.

· Высокая точность управления уровнем легирования.

§ кремний на изоляторе (КНИ). В случае синтезирования монокристаллического кремния на диэлектрической подложке исче­зает необходимость в создании изолирующих p-n переходов между элементами ИС. Как разновидность метода КНИ используется технология кремний на сапфире (КНС) Al 2 O 3 .

§ Гетеропереходы.

Эпитаксия из газовой фазы.
Идея метода, схема реактора.

Термин "эпитаксия" применяют к процессам выращивания тонких монокристаллических слоев на монокристаллических подложках. Материал подложки в этом процессе выполняет роль затравочного кристалла.

Если материалы получаемого слоя и подложки идентичны, например, кремний выращивают на кремнии, то процесс назы­вают автоэпитаксиальным или гомоэпитаксиальным . Если же материалы слоя и подложки различаются (хотя их кристалличе­ская структура должна быть сходной для обеспечения роста монокристаллического слоя), то процесс называют гетероэпитак­сиальным .

Эпитаксиальное выращивание кремния из парогазовой фазы обычно проводят в реакторе, изготовленном из стеклообразного кварца, на помещенном внутри него пьедестале (подложкодержателе ). Пьедестал служит для установки подложек и их нагрева во время процесса. Выращивание кремния проводится в потоке парогазовой смеси при высоких температурах.

Для выращивания эпитаксиального кремния используется один из четырех кремнесодержащих реагентов (тетрахлорид кремния - SiCl 4 , трихлорсилан - SiHCl 3 , дихлорсилан - SiH 2 Cl 2 и силан - SiH 4) и водород. При таких условиях возможно проте­кание химических реакций типа SiCl 4 + 2H 2 = Si тв + 4HCl.



Схема реактора для эпитаксии из парогазовой смеси.

1- держатель; 2- кремниевая пластина; 3- пленка.

Газ разлагается на поверхности пластины и на нее осаждаются атомы кремния. Разложение кремнесодержащих компонент происходит пиролитически , т.е. только за счет тепла. Скорость роста пленки пропорциональна парциальному давлению силана . Все вещества, поступающие в реактор являются газами, отсюда и название "химическое осаждение из газовой фазы".

Молекулярно-лучевая эпитаксия

· Низкая температура процесса. Снижение температуры процесса уменьшает диффузию примеси из подложки и автоле­гирование . Это позволяет получать качественные тонкие слои.

· Высокая точность управления уровнем легирования. Легирование при использовании данного метода является без­инерционным (в отличие эпитаксии из газовой фазы), что позволяет получать сложные профили легирования.

Сущность процесса состоит в испарении кремния и одной или нескольких легирующих примесей. Низкой давление па­ров кремния и легирующих примесей гарантирует их конденсацию на относительно холодной подложке. Обычно МЛЭ проводят в сверхвысоком вакууме при давлении 10 -6 - 10 -8 Па. Температурный диапазон составляет 400 - 800 °С.

Основой установки является вакуумная система. Так как в процессе МЛЭ требуется поддерживать высокий вакуум, уста­новки снабжаются вакуумными шлюзами для смены образцов, что обеспечивает высокую пропускную способность при смене пластин и исключает возможность проникновения атмосферного воздуха. Для обеспечения высокого качества и чистоты расту­щего слоя необходимо низкое давление. Этого добиваются, используя безмасляные средства откачки (например, титановый гет­терный насос). Метод МЛЭ позволяет проводить всесторонний анализ некоторых параметров непосредственно во время про­цесса выращивания пленки. Испарение кремния осуществляется не путем нагрева тигля, как для легирующих элементов, а за счет нагрева электронным лучом, т. к. температура плавления кремня относительно высока.


Рис. 2. Схема установки для МЛЭ

1-термопара; 2-кварцевый кристалл-измеритель толщины; 3-тепловой экран; 4-нагреватель; 5-подложка; 6-держатель; 7-окно для визуального наблюдения; 8-масс-спектрометр; 9-инизационный вакуумметр; 10-механический затвор; 11-источник сурьмы; 12-электронная пушка и источник кремния; 13-титановый геттерный насос; 14-турбокомпрессионный насос.

Создание диэлектрических слоев.

Осаждение диэлектрических пленок широко используется для производства СБИС. Эти пленки:

o формируют непроводящие участки внутри схемы,

o выполняют роль электрического изолятора между металлами,

o защищают поверхность от воздействия окружающей среды.

Двуокись кремния

Диэлектрическая постоянная 3,82, Ширина запрещенной зоны 8,9 эВ, Удельное сопротивление 10 14 -10 16 Ом·см

Слои SiO 2 используются как:

· маска для диффузии легирующих примесей;

· для пассивации поверхности полупроводников;

· для изоляции отдельных элементов СБИС друг от друга;

· в качестве подзатворного диэлектрика;

· в качестве одного из многослойных диэлектриков в производстве МНОП элементов памяти;

· в качестве изоляции в схемах с многослойной металлизацией;

· как составная часть шаблона для рентгеновской литографии.


Пленки SiO 2 в микроэлектронной промышленности получают путем окисления кремния различными способами:

· термическое окисление (сухое, влажное, хлорное, пирогенное);

· анодное окисление;

· пиролитическое окисление;

· плазмохимическое окисление.

процесс окисления происходит при средних температурах (1000 °C) с использованием сухого кислорода иногда с до­бавлением соляной кислоты в окислительную среду. Второй этап заключается в термообработке в атмосфере при темпе­ратуре 1150 °C для проведения пассивирования и доведения толщины окисла до необходимого уровня.

Нитрид кремния

Стехиометричный Si 3 N 4 используют для пассивирования поверхности полупроводниковых приборов или активная среда в МНОП РПЗУ

Получают аммонолизом моносилана при атмосферном давлении и температуре 700 - 900 °C. Удельное сопротивление 10 16 Ом·см, плотность 2.9 - 3.1 г/см 3 , диэлектрическая постоянная 6-7, ширина запрещенной зоны 5 эВ


Пиролитический метод формирования пленок основан на использовании явления пиролиза или химических реакций при фор­мировании пленок поликристаллического кремния или пленок различных изолирующих материалов. В качестве химически активного газа применяют моносилан SiH 4 и кислород, а в качестве буферного газа - азот (обычно пьедестал и пластины соприкасаются и разогреваются). При формировании пленок поликристаллического кремния пластина должна быть разогрета до 600 - 650 °С , а пленок нитрида кремния до 750 - 800 °С. Если нагрев пластин нежелателен, то используют альтернативные методы получения пленок (например, плазмохимический метод).

Процессы плазменного окисления металлов и полупроводников заключается в формировании на их поверхности оксидных слоев при помещении подложек-образцов в кислородную плазму. Образцы могут быть изолированными (плазменное оксидирование) или находиться под положительным относительно плазмы потенциалом (плазменное анодирование).


Горизонтальный реактор


Создание p-n переходов..

Диффузия в полупроводниках это процесс последовательного перемещения атомов примеси в кристаллической решетке, обусловленной тепловым движением. Для изготовления р-n перехода используется химическая диффузия примесных атомов, которые вводятся в кристаллическую решетку вещества для изменения его электрофизических свойств.
Назначение диффузии:

· формирование базовых и эмиттерных областей и резисторов в биполярной технологии,

· создание областей истока и стока в МОП технологии,

· для легирования поликристаллического кремния.

Способы диффузии:

· диффузия из химического истока в парообразной форме при высоких температурах,

· диффузия из легированных окислов,

· диффузия из ионно-имплантированных слоев с последующим отжигом (проводится для активирования имплантации атомов и уменьшения числа дефектов).

Ионная имплантация

Ионной имплантацией называется процесс внедрения в мишень ионизованных атомов с энергией, достаточной для проникновения в ее приповерхностные области. Успешное применение ионной имплантации определяется главным образом возможностью предсказания и управления электрическими и механическими свойствами формируемых элементов при заданных условиях имплантирования . Распределение внедренных атомов по глубине мишени оценивается с помощью симметричной функции распределения Гаусса. Общая длина пробега иона зависит от его энергии и массы. Эффект каналирования . Для снятия радиационных дефектов применяют отжиги. Параметры процесса отжига определяются дозой и видом имплантированных ионов.

Литография.

· Фоторезисты . Шаблоны.

В качестве негативного резиста при оптической литографии применяют циклополиизопреновый полимер

· Оптическая литография.

Основными методами оптического экспонирования являются контактный , бесконтактный и проекционный. Характеристики точности отображения проекционных систем печати ограничены дифракционными эффектами.

· Электронно-лучевая литография


Существуют две основные возможности использования электронных пучков для облучения поверхности пластины с целью нанесения рисунка -о дновременное экспонирование всего изображения целиком и последовательное экспонирование (сканирование) отдельных участков рисунка. Ограничения на ширину линий и плотность упаковки определяются не столько работой электронного пучка, сколько разрешающей способностью резиста и возможной точностью совмещения шаблона с пластиной.

· Рентгеновская литография.

Рентгеновская литография является разновидностью оптической бесконтактной печати, в которой длина волны экспонирующего облучения лежит в диапазоне 0.4 - 5 нм.

Методы оптической литографии

Основными методами оптического экспонирования являются контактный , бесконтактный и проекционный.

Контактная печать. При контактной печати (см . рис. 1) пластина кремния, покрытая резистом , находится в непосредственном физическом контакте со стеклянным фотошаблоном.

1- источник света 2- оптическая система 3- шаблон 4- фоторезист 5- кремниевая пластина 6-зазор

Для того чтобы провести совмещение топологического рисунка фотошаблона с предыдущим, вытравленным в кремнии топологическим рисунком, шаблон и пластину разводят на 25 мкм, а пару объективов с сильным увеличением помещают сзади шаблона для одновременного наблюдения рисунков шаблона и пластины из двух точек.

Метод бесконтактного экспонирования схож с методом контактной печати, за исключением того, что во время экспонирования между пластиной и шаблоном поддерживается небольшой зазор шириной 10-25 мкм.

Третий метод экспонирования - проекционная печать (см . рис. 3) позволяет полностью исключить повреждения поверхности шаблона. Изображение топологического рисунка шаблона проецируется на покрытую резистом пластинку, которая расположена на расстоянии нескольких сантиметров от шаблона.

1- источник света 2- оптическая система 3- шаблон 4- фоторезист 5- кремниевая пластина

Для достижения высокого разрешения отображается только небольшая часть рисунка шаблона. Это небольшая отражаемая область сканируется или перемещается по поверхности пластины. В сканирующих проекционных устройствах печати шаблон и пластина синхронно перемещаются. С помощью этого метода достигается разрешение порядка 1,5 мкм ширины линий и расстояния между ними.

Фоторезисты

В качестве негативного резиста при оптической литографии применяют циклополиизопреновый полимер, смешанный с фоточувствительным соединением. Сенсибилизатор, или фотоинициатор активируется при поглощении энергии в диапазоне длин волн 200-450 нм. Активированный сенсибилизатор передает энергию молекулам полимера, что способствует образованию поперечных связей между цепочками полимера. Увеличение молекулярного веса полимера приводит к нерастворимости резиста в проявителе. При проявлении пленка негативного резиста разбухает, а его неэкспонированные области с низким молекулярным весом растворяется в проявителе. Позитивные резисты также состоят из основного полимерного материала и фотосенсибилизатора , но абсолютно по-другому реагируют на воздействие экспонирующего облучения. Сенсибилизатор нерастворим в водном растворе проявителя и, следовательно, предотвращает растворение основного полимерного материала.

Проекционная литография

Существуют две основные возможности использования электронных пучков для облучения поверхности пластины с целью нанесения рисунка. Это одновременное экспонирование всего изображения целиком и последовательное экспонирование (сканирование) отдельных участков рисунка.

Проекционные системы, как правило, имеют высокую производительность и более просты, чем сканирующие системы. Носителем информации об изображении является маска (шаблон). Изображение с шаблона передается на пластину лучом электронов.

Сканирующие системы управляются вычислительной машиной, которая задает программу перемещения сфокусированного пучка электронов для нанесения рисунка, исправляет эффекты дисторсии и расширения пучка и определяет положение пластины. Непосредственное нанесение рисунка с помощью ЭВМ позволяет обойтись без шаблона. Поэтому электронно-лучевые сканирующие системы могут быть использованы как для изготовления шаблонов, так и для непосредственной прорисовки на пластине. Эти установки имеют высокое пространственное расширение и точность совмещения, приближающиеся к 0,1 мкм.

Рентгеновская литография является разновидностью оптической бесконтактной печати, в которой длина волны экспонирующего облучения лежит в диапазоне 0.4 - 5 нм. Несмотря на то, что при рентгеновской литографии используется бесконтактная экспонирующая система, проявление дифракционных эффектов уменьшено за счет малой длины волны рентгеновского излучения. Основная причина разработки метода рентгеновской литографии заключалась в возможности получения высокого разрешения и в то же время высокой производительности оборудования. Рентгеновские шаблоны состоят из поглощающих рентгеновское излучение металлических пленок с нанесенным на них рисунком и тонкой мембраны, пропускающей рентгеновские лучи.

Травление.

Для формирования топологии схемы необходимо перевести рисунки резиста в соответствующие слои полупроводниковой структуры. Один из методов такого перевода заключается в селективном удалении немаскированных участков резиста . Этот процесс называют травлением.

1. Химическое травление

2. Методы плазменного травления

3.2. Металлизация с использованием источников резистивного нагрева

3. Металлизация с использованием электронно-лучевого испарения

4. Металлизация с использованием источников индукционного нагрева

5. Металлизация с использованием ионного распыления

6. Металлизация с использованием магнетронного источника Методы сборки и герметизации

Один из основных методов монтажа кристаллов является соединение его с корпусом твердыми припоями (или эвтектикой).
Ультразвуковая сварка С помощью пуансона проволока прижимается к контактной площадке подложки, при этом к пуансону прикладываются УЗ колебания перпендикулярно направлению приложения давления с частотой 20...60 кГц.
Соединение проволокой может быть выполнено золотой проволокой методом термокомпрессии , ультразвуковым и термозвуковым методами или алюминиевой проволокой ультразвуковым методом.

Для герметизации ИС обычно используют эпоксидные смолы и кремнийорганические соединения.
Основной целью герметизации корпуса является защита от внешних загрязнений во время функционирования прибора. Почти для всех высококачественных корпусов герметизацию выполняют стеклом или металлом.

4 Производство интегральных микросхем

Интегра́льная (микро)схе́ма (ИС, ИМС, м/сх, англ. Integrated circuit, IC, microcircuit), чип, микрочи́п (англ. microchip, silicon chip, chip) - тонкая пластинка, отколотая, отсечённая от чего-либо - первоначально термин относился к пластинке кристалла микросхемы) - микроэлектронное устройство - электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) - ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа», в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. На 2009 год большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Современные интегральные микросхемы, предназначенные для поверхностного монтажа

Советские и зарубежные цифровые микросхемы

4.1 Технология производства полупроводниковых приборов и интегральных микросхем

Технология полупроводникового производства базируется в настоящее время на таких сложных прецизионных процессах обработки, как фото- и электронолитография, оксидирование, ионно-плазменное распыление, ионная имплантация, диффузия, термокомпрессия и др. К материалам, используемым в производстве приборов и микросхем, предъявляют высокие требования по чистоте и совершенству структуры. Для осуществления большинства технологических операций используют уникальное по характеристикам оборудование: оптико-механическое, термическое, ионно-лучевое. Процессы осуществляются в -специальных обеспыленных, помещениях с заданными влажностью и температурой.

4.2 Технологический маршрут

Технологический маршрут - это последовательность технологических операций обработки полупроводниковых пластин, применяемых для изготовления данного типа ПП или ИМС. Документом, содержащим описание маршрута, -является маршрутная карта. Она позволяет судить о перемещении изготовляемого прибора по всем операциям, указывает оборудование, материалы, трудовые нормативы и средства контроля. Проведение каждой технологической операции"регламентируется операционной картой, содержащей описание операции с указанием технологических режимов изготовления структуры или прибора и технологической оснастки. Технологические процессы изготовления различных ПП и ИМС многообразны. Можно выделить ряд общих технологических операций и примерно одинаковую их последовательность. Типовым маршрутом изготовления пленарного ПП или ИМС определяется последовательность из ряда основных операций.

1. Подготовка пластин. Исходные полупроводниковые пластины- эпитаксиальные структуры, например я-я+-типа, или монокристаллические подложки с электропроводностью п- или р-типа, полученные в качестве полуфабриката с завода-изготовителя, подвергают очистке, промывке, травлению с целью удаления с поверх-1 ности пластин загрязнений и частиц пыли. Слой с электропроводностью я-типа в эпитаксиальной я-я+-структуре составит в будущих транзисторах коллекторную область (рис. 1.1, а)..

2. Создание топологического рисунка. Чтобы в эпитаксиальной структуре сформировать области с электропроводностью р-типа, необходимо обеспечить проведение локальной диффузии через окна - отверстия в защитной маске. Размеры этих окон задают с помощью процесса фотолитографии. Маской, препятствующей диффузии, служит пленка диоксида кремния. Выращивание ее является необходимой стадией планарного процесса. Пленка диоксида 7 кремния Si02 толщиной 0,3-1,0 мкм надежно предохраняет структуру от воздействия многих внешних факторов и диффузии примесей. На пленку наносят слой фоторезиста - фотоэмульсии, экспонируют его ультрафиолетовым светом через фотошаблон, содержащий множество идентичных изображений баз транзисторов с ваданной конфигурацией и размерами. Засвеченные участки фоторезиста проявляются и обнажившуюся пленку Si02 удаляют. Окно, вскрытое для базовой диффузии, показано на рис. 1.1, б.

3. Получение р-п-перехода база- коллектор. Для прецизионной дозировки количества вводимой в кристалл примеси - атомов бора при создании области р-базы - используют процесс ионной имплантации, заключающийся во внедрении ускоренных ионов в поверхность кристалла. Слой фоторезиста служит защитной маской, так как ионы, внедренные в фоторезист, не достигают поверхности диоксида. Чтобы сформировать базовую область и р-п-пере-ход коллектор - база на требуемой глубине, используют последующую диффузионную разгонку внедренных атомов бора. Ее проводят в окислительной среде при высоких температурах. В результате формируется область базы с глубиной 2-3 мкм и на поверхности базовой области наращивается пленка Si02 толщиной 0,3-0,5 мкм (рис. 1.1, в).

4. Получение p-n-nepexoda эмиттер - база. Вначале формируют топологический рисунок эмиттерных областей, используя процесс фотолитографии по пленке Si02 над базовой областью. Одновременно вскрывают окна, задающие конфигурацию коллекторных 8 контактов. Фоторезист удаляют и ведут диффузию фосфора с высокой концентрацией на малую глубину (до 1-1,5 мкм) (рис. 1.1, г).

5. Контактная металлизация. Для присоединения к областям эмиттера, базы и коллектора электрических выводов необходимо металлизировать поверхности контактов. Предварительно проводят фотолитографическую обработку структуры для удаления пленки диоксида с нужных участков. Затем с помощью термического испарения в вакууме на всю поверхность пластины напыляют слой металла (например, алюминия) толщиной около 1 мкм, по которому проводят еще один процесс фотолитографии для удаления лишнего металла между областями контактов. Структура с контактной металлизацией показана на рис. 1.1, д. При изготовлении ИМС аналогичным образом создают тонкопленочные пассивные элементы- резисторы, конденсаторы, а также осуществляют коммутацию транзисторов.

6. Сборка и герметизация. Пластина содержит от нескольких сотен до десятков тысяч отдельных транзисторов. Ее разрезают на отдельные структуры, называемые на данном этапе кристаллами. На рис. 1.1, е показана топология такого кристалла с контактной металлизацией. Кристалл напаивают на кристаллодержатель, осуществляют разводку - подсоединение электрических выводов к контактам базы, эмиттера и коллектора - и герметизируют, помещая в металлический корпус или заливая пластмассой.

7. Испытания приборов. Для оценки параметров и надежности приборов до их поступления в отдел технического контроля производят электрические, климатические и механические испытания. Они важны для правильной информации о качестве и надежности приборов. Помимо этого каждая технологическая операция сопровождается контролем качества обработки, например измерением глубины диффузии, толщины эпитаксиального слоя, удельного или поверхностного сопротивления. После того как в структуре созданы?-?-переходы, производят контроль электрических параметров- напряжения пробоя, тока утечки, емкости. В технологическом маршруте предусмотрены специальные контрольные карты.

Рассмотренная последовательность операций характерна для изготовления планарно-эпитаксцального транзистора. В основе классификации приборов лежит технологической метод создания активных областей структуры. По этому признаку различают сплавные, диффузионные, эпитаксиальные, имплантационные дискретные ПП, а также их модификации, например сплавно-диффу-зионные и др. Большинство современных приборов изготовляют на эпитаксиальных структурах. Активные области формируют с помощью ионной имплантации и диффузии. МОП-транзисторы изготовляют на монокристаллических подложках без эпитаксиального слоя методами планарной. технологии. Непланарные диффузионные и эпитаксиальные переходы используют при изготовлении силовых Диодов и транзисторов.

Степень интеграции.

Были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

Малая интегральная схема (МИС) - до 100 элементов в кристалле.

Средняя интегральная схема (СИС) - до 1000 элементов в кристалле.

Большая интегральная схема (БИС) - до 10000 элементов в кристалле.

Сверхбольшая интегральная схема (СБИС) - до 1 миллиона элементов в кристалле.

Ультрабольшая интегральная схема (УБИС) - до 1 миллиарда элементов в кристалле.

Гигабольшая интегральная схема (ГБИС) - более 1 миллиарда элементов в кристалле.

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления.

Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).

Плёночная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок:

· толстоплёночная интегральная схема;

· тонкоплёночная интегральная схема.

Гибридная микросхема - кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Вид обрабатываемого сигнала.

Аналоговые

Цифровые

Аналого-цифровые

Аналоговые микросхемы - входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы - входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица - это −0,8…−1,03 В, а логический ноль - это −1,6…−1,75 В. Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

Рис. 1 Информационно-логическая модель проектирования радиоэлектронных устройств

Рис. 2 Детализация блока «Разработка структуры РЭУ с применением комплексного моделирования»


Рис. 3. Детализация блока «Комплексное моделирование физических процессов в РЭУ»

Рис. 4. Детализация блока «Исследование надёжности РЭУ»


Заключение

В результате проводимых мероприятий по развитию и реформированию радиоэлектронного комплекса должна быть создана его структура, обеспечивающая устойчивое эффективное функционирование предприятий. При этом должны быть, безусловно, обеспечены условия выполнения действующей и разрабатываемой Государственных программ вооружения, программ военно-технического сотрудничества с иностранными государствами, федеральных и межгосударственных целевых программ. Должны получить развитие перспективные наукоемкие технологии для разработки и производства конкурентоспособной на внутреннем и внешнем рынках высокотехнологичной продукции двойного и гражданского назначения. От наших согласованных действий, будет зависеть не только развитие радиоэлектронного комплекса, но и в целом обеспечение национальных интересов России.

При стремительном росте российского рынка электроники в ряде отраслей, измеряемом двузначными цифрами (в процентах), его объем в сравнении с аналогичными показателями развитых стран пренебрежимо мал, чтобы оказывать сколько-нибудь значимое влияние на мировой рынок. По мнению некоторых экспертов, радикально изменить ситуацию на отечественном рынке электроники в области наращивания объемов производства удастся только после развертывания массового выпуска конкурентных конечных изделий под российским брендом. Основное производство отечественной электроники сосредоточено в столице и ряде крупных городов, и на нитевых рынках она способна конкурировать с западными продуктами внутри страны, а в некоторых случаях и за рубежом. Инновационный потенциал страны в электронной области не угас, но требует поддержки в государственном масштабе.


Литература

1. Ивченко В.Г. Конструирование и технология ЭВМ. Конспект лекций. - /Таганрог: ТГРУ, Кафедра конструирования электронных средств. – 2001. - http://www2.fep.tsure.ru/russian/kes/books/kitevm/lekpart1.doc

2. Гольдштейн Г.Я. Инновационный менеджмент: Учебное пособие. - Таганрог: Изд-во ТРТУ, 1998. 132с. URL: http://www.aup.ru/books/m23/1.htm

3. Конструкторско-технологическое проектирование электронной аппаратуры: Учебник для вузов. – М.: Изд. МГТУ им. Н.Э. Баумана, 2002. – 528 с. URL: http://slil.ru/22574041/529407141/Konstruktorsko-tehnologicheskoe_proektirovanie_elektronnoj_apparatury.rar

4. Технология приборостроения: Учебник / Под общей редакцией проф. И.П.Бушминского. – М.: МГТУ им. Н.Э.Баумана. URL: http://www.engineer.bmstu.ru/res/RL6/book1/book/metod/tpres.htm

5. Тупик В.А. Технология и организация производства радиоэлектронной аппаратуры. – СПб: Издательство: СПбГЭТУ "ЛЭТИ" – 2004. URL: http://dl10cg.rapidshare.de/files/31510061/4078542704/tehnologiya.i.organizaciya.proizvodstva.radioelektronnoj.apparatury.pdf.rar

6. ГОСТ Р 15.000-94. Система разработки и постановки продукции на производство. Основные положения.

7. ГОСТ Р 15.201-2000. Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство.... рабочим органом, функции который будет выполнять созданный в качестве главного организационного инструмента совершенствования РИС – Аналитический Центр Инновационного Развития (АЦИР). Стратегическая функция АЦИР – организационно-правовое и финансовое сопровождение креативной деятельности в регионе, объединение под единым управлением инновационной и инвестиционной функции. Создатели инноваций (...

Которая поступает в непосредственное потребление без предварительной переработки, относится к предметам потребления. 2.6 Научно-технический прогресс в агропромышленном комплексе. Осуществление научно-технического прогресса в сельском хозяйстве базируется на присущих ему экономических и биологических законах. Вследствие этого научно-технический прогресс в аграрном производстве имеет свои...



Посредника – ФГУП «Рособоронэкспорт». Все это предполагает необходимость проведения исследований и разработки методического обеспечения оценки государственным посредником инвестиционной привлекательности предприятий – исполнителей контрактов в сфере военно-технического сотрудничества. В результате решения поставленной в диссертационной работе научной задачи автором: 1. Проведен анализ...

Без чего сложно представить существование современного человека? Конечно, без современной техники. Некоторые вещи так вошли в нашу жизнь, так приелись. Интернет, телевизор, микроволновки, холодильники, стиральные машины – без этого сложно представить современный мир и, конечно, себя в нем.

Что делает практически всю сегодняшнюю технику по-настоящему полезной и нужной?

Какое изобретение предоставило прогрессу широчайшие возможности?

Одно из самых незаменимых открытий человека - технология производства микросхем.

Благодаря ей современная техника имеет такие небольшие размеры. Она компактна и удобна.

Все мы знаем, что в доме может уместиться огромное количество вещей, состоящих из микросхем. Многие из них помещаются в кармане брюк и имеют незначительный вес.

Тернистый путь

Чтобы добиться результата и получить микросхему, ученые трудились долгие годы. Начальные схемы имели огромнейшие по нынешним меркам размеры, они были больше и тяжелее холодильника, при ом что современный холодильник не состоит сплошь из сложных и запутанных схем. Ничего подобного! В нем есть одна маленькая, но превосходящая по своей полезности старые и громоздкие. Открытие произвело фурор, дав толчок дальнейшему развитию науки и техники, прорыв был сделан. Оборудование для производства микросхем выпущено.

Оборудование

Производство микросхем является непростой задачей, но благо у человека имеются те технологии, которые максимально упрощают задачу производства. Несмотря на сложность, ежедневно выпускается огромное количество микросхем по всему миру. Они постоянно совершенствуются, приобретают новые особенности и повышенные характеристики. Как же появляются эти маленькие, но умные системы? В этом помогает оборудование для производства микросхем, о котором, собственно, говорится далее.

При создании микросхем используются системы электрохимического осаждения, камеры отмывки, лабораторные окислительные камеры, системы электроосаждения меди, фотолитографическое и другое технологическое оборудование.

Фотолитографическое оборудование является самым дорогим и точным в машиностроении. Оно отвечает за создание изображений на кремниевой подложке для выработки намеченной топологии микросхемы. На тонкий слой материала наносится фоторезист, впоследствии подвергающийся облучению фотошаблоном и оптической системой. В процессе работы оборудования идет уменьшение размеров элементов рисунка.

В системах позиционирования ведущую роль играет линейный электродвигатель и лазерный интерферометр, имеющие часто обратную связь. Но, например, в технологии, разработанной московской лабораторией «Амфора», такая связь отсутствует. Это отечественное оборудование имеет более точное перемещение и плавное повторение с обеих сторон, что исключает возможность люфта.

Специальные фильтры защищают маску от нагревания, исходящего от области глубокого ультрафиолета, перенося температуру за 1000 градусов на протяжении долгих месяцев работы.

Низкоэнергетичные ионы осваивают в нанесении на многослойные покрытия. Ранее эта работа выполнялась исключительно методом магнетронного распыления.

Технология производства микросхем

Начинается весь процесс создания с подбора полупроводниковых кристаллов. Самым актуальным является кремний. Тонкую полупроводниковую пластину начищают до возникновения зеркального отображения в ней. В дальнейшем обязательным этапом создания будет фотолитография с применением ультрафиолета при нанесении рисунка. В этом помогает станок для производства микросхем.

Что такое микросхема? Это такой многослойный пирожок из тонких кремниевых пластин. На каждую из них нанесен определенный рисунок. Этот самый рисунок и создается на этапе фотолитографии. Пластины осторожно помещают в специальное оборудование с температурой свыше 700 градусов. После обжига их промывают водой.

Процесс создания многослойной пластины занимает до двух недель. Фотолитографию проводят многочисленное количество раз вплоть до достижения необходимого результата.

Создание микросхем в России

Отечественные ученые в этой отрасли также имеют собственные технологии производства цифровых микросхем. По всей стране функционируют заводы соответствующего профиля. На выходе технические характеристики мало чем уступают конкурентам из других стран. Отдают предпочтение российским микросхемам в нескольких государствах. Все благодаря зафиксированной цене, которая меньше, чем у западных производителей.

Необходимые составляющие выпуска качественных микросхем

Микросхемы создаются в помещениях, оборудованных системами, контролирующими чистоту воздуха. На всем этапе создания специальные фильтры собирают информацию и обрабатывают воздух, тем самым делая его чище, чем в операционных. Работники на производстве носят специальные защитные комбинезоны, которые часто оборудованы системой внутренней подачи кислорода.

Производство микросхем является прибыльным бизнесом. Хорошие специалисты в этой области всегда востребованы. Практически вся электроника функционирует за счет микросхем. Ими оснащаются современные автомобили. Космические аппараты не смогли бы функционировать без наличия в них микросхем. Процесс получения регулярно совершенствуется, качество улучшается, возможности расширяются, срок пригодности растет. Микросхемы будут актуальны на протяжении долгих десятков, а то и сотен лет. Главная их задача - приносить пользу на Земле и вне ее.

Продолжительность: 2 часа (90 мин.)

11.1 Основные вопросы

Понятие интегральной микросхемы;

Виды интегральных микросхем, различия между полупроводниковыми и гибридно-пленочными микросхемами;

Основные этапы производства полупроводниковых интегральных микросхем;

Основные этапы производства гибридно-пленочных интегральных микросхем.

11.2 Текст лекции

11.2.1 Понятие интегральной микросхемы. Виды интегральных микросхем до 40 мин

Ранее вся электронная аппаратура создавалась на основе дискретных электрорадиоэлементов, которые с помощью соединительных проводов объединялись в функциональные узлы. Усложнение электронной аппаратуры, высокая трудоемкость операций по установке и электрическому монтажу дискретных элементов обусловили необходимость использования функционально законченных электронных узлов, изготовление которых было бы автоматизированным – интегральных микросхем, выполняющих функции преобразования, хранения, обработки, передачи и приема информации и определяющих тактико-технические, конструктивно-технологические, эксплуатационные и экономические характеристики ЭВМ.

Интегральной микросхемой (ИМС) называют функционально законченный электронный узел, элементы и соединения в котором конструктивно неразделимы и изготовлены одновременно в едином технологическом процессе.

По конструктивно-технологическому исполнению ИМС делятся на полупроводниковые и гибридно-пленочные.

Полупроводниковые ИМС имеют в своей основе кристалл полупроводникового материала, в поверхностном слое которого (путем внедрения атомов примеси) создаются все элементы ИМС – транзисторы, диоды, резисторы, конденсаторы, а соединения между ними выполняются по поверхности кристалла тонкопленочной технологией.

Полупроводниковые ИМС могут быть:

Однокристальными (монолитными);

Многокристальными (микросборки).

Однокристальные ИМС выполнены на одном кристалле полупроводникового материала, могут иметь индивидуальный корпус с внешними выводами для монтажа на печатной плате, а могут быть бескорпусными и входить в состав микросборок.

Микросборка представляет собой совокупность бескорпусных микросхем, смонтированных на общей коммутационной плате. Также в качестве компонентов в микросборке могут присутствовать бескорпусные электрорадиоэлементы.

Гибридно-пленочные ИМС состоят из пленочных пассивных элементов (резисторов, конденсаторов и т.п.), бескорпусных полупроводниковых кристаллов (транзисторов, диодов, ИМС) и коммутационных проводников, собранных на подложку из изоляционного материала.

Число элементов в ИМС характеризует ее степень интеграции. По этому параметру все микросхемы условно делят на малые (МИС - до 10 2 элементов на кристалл), средние (СИС - до 10 3), большие (БИС - до 10 4), сверхбольшие (СБИС - до 10 6), ультрабольшие (УБИС - до 10 9) и гигабольшие (ГБИС - более 10 9 элементов на кристалл).

Наиболее высокой степенью интеграции обладают цифровые ИМС с регулярной структурой: схемы динамической и статической памяти, постоянные и перепрограммируемые запоминающие устройства. Это связано с тем, что в таких схемах доля участков поверхности ИМС, приходящаяся на межсоединения, существенно меньше, чем в схемах с нерегулярной структурой.

В качестве активных элементов в полупроводниковых ИМС в вычислительной технике чаще всего используют униполярные (полевые) транзисторы со структурой «металл – диэлектрик (оксид) – полупроводник» (МДП- или МОП-транзисторы). Существует два типа МДП-транзисторов: n-типа, обладающие электронной проводимостью, и p-типа, характеризующиеся проводимостью дырочной. Принцип действия таких транзисторов достаточно прост. В подложке кремния формируются две легированные области с электронной (n-тип) или дырочной (p-тип) проводимостью. Эти области называются стоком и истоком. В обычном состоянии электроны (для n-типа) или дырки (для p-типа) хотя и диффундируют в область кремния за счет избыточной концентрации, но не способны перемещаться между стоком и истоком, поскольку неизбежны процессы рекомбинации в области кремния. Кроме того, за счет такой диффузии на границах контактов между легированными областями стока и истока и кремния возникают локальные электрические поля, препятствующие дальнейшей диффузии и приводящие к образованию обедненного носителями слоя. Поэтому в обычном состоянии прохождение тока между истоком и стоком невозможно. Для того чтобы иметь возможность переносить заряд между истоком и стоком, используется третий электрод, называемый затвором. Затвор отделен от кремниевой подложки слоем диэлектрика, в качестве которого выступает диоксид кремния (SiO2). При подаче потенциала на затвор создаваемое им электрическое поле вытесняет вглубь кремниевой подложки основные носители заряда кремния, а в образующуюся обедненную носителями область втягиваются основные носители заряда стока и истока (мы говорим об основных носителях заряда, а не конкретно о дырках или электронах, поскольку возможен и тот и другой вариант). В результате между истоком и стоком в подзатворной области образуется своеобразный канал, насыщенный основными носителями заряда. Если теперь между истоком и стоком приложить напряжение, то по каналу пойдет ток. При этом принято говорить, что транзистор находится в открытом состоянии. При исчезновении потенциала на затворе канал разрушается и ток не проходит, то есть транзистор запирается.

Также в полупроводниковых ИМС могут использоваться и другие типы транзисторов, например, биполярные.

Биполярная технология на 30 % сложнее МДП технологии. В МДП технологии меньше количество технологических операций, особенно высокотемпературных диффузии; при одинаковой сложности - меньше размер (20 % от биполярной технологии), и, следовательно, больше процент выхода годных микросхем (т.к. вероятность возникновения дефекта на меньшей площади меньше).

Высокая надежность МДП микросхем обусловлена: меньшими размерами элементов (малые размеры элементов и малое энергопотребление дает возможность широко применять резервирование и мажоритарную логику даже в сложных схемах); значительным уменьшением числа межэлементных соединений.

К достоинству биполярных микросхем можно отнести быстродействие.

11.2.2 Основные технологические особенности производства интегральных микросхем до 50 мин

Важнейшим принципом технологии полупроводниковых МС является технологическая совместимость элементов ИМС с наиболее сложным элементом, которым является транзистор. Другие элементы (диоды, резисторы, конденсаторы) должны по возможности содержать только те области, которые включает транзистор. таким образом, технологический процесс изготовления полупроводниковой ИМС базируется прежде всего на технологии изготовления транзисторных структур.

Второй важный принцип – групповая обработка МС. Она должна охватывать как можно большее число операций. При групповой обработке улучшается воспроизводимость параметров ИМС и существенно снижается трудоемкость изготовления отдельных ИМС.

Следующим важным принципом является универсальность процессов обработки . Он означает, что для изготовления совершенно различных по своим возможностям и назначению ИМС применяются одинаковые типовые технологические процессы, оборудование и режимы. Это позволяет одновременно, без переналадки оборудования, выпускать ИМС различного функционального назначения.

Четвертый принцип – унификация пластин-заготовок , содержащих максимальное количество признаков микросхемы.

Технологический процесс производства современных (полупроводниковых) СБИС представляет собой последовательность операций и переходов между ними, осуществляемых над исходными полупроводниковыми пластинами с целью получения микросхем с требуемыми эксплуатационными характеристиками. Технологические операции можно разделить на три группы: подготовительные, основные и заключительные.

К подготовительным операциям относят выращивание полупроводниковых слитков (например, методами Чохральского и зонной плавки), резку слитков на пластины, шлифовку, полировку, травление поверхности пластин, промывку в деионизованной воде, сушку и др.

К основным технологическим операциям относят литографию (фотолитографию в ультрафиолетовой области спектра и в жестком ультрафиолете, рентгенолитографию, электронно-лучевую и ионную литографии), эпитаксию (посредством испарения в глубоком вакууме и распыления ионами инертного газа, эпитаксию за счет реакций разложения и восстановления, жидкофазную и молекулярно-лучевую эпитаксии), окисление, травление (ионно-лучевое и ионно-плазменное), легирование (диффузия, ионная имплантация), отжиг (посредством галогенных ламп, отжиг электронным пучком, лазерный отжиг), осаждение на поверхность пластин различных по химическому составу пленок и др.

К заключительным технологическим операциям относят скрайбирование и ломку пластин на кристаллы, разварку внешних выводов, герметизацию кристаллов в корпусах и др.

Практически все перечисленные технологические операции сопровождаются контрольными операциями, позволяющими осуществлять отбраковку дефектных пластин и кристаллов. К ним относят, например, контроль содержания примесей в пластинах, контроль деформаций поверхности пластин и др.

При производстве различных типов гибридных интегральных микросхем технологический процесс может содержать различные операции (это зависит от выбранной технологии - тонкопленочной или толстопленочной, от того, какие пассивные элементы используются в схеме - есть ли, например, пленочные конденсаторы).

Укрупненные схемы технологических процессов производства полупроводниковых и гибридно-пленочных ИМС приведена на рисунках 11.1 и 11.2.

Рисунок 11.1 – Укрупненная схема технологического процесса изготовления полупроводниковых однокристальных ИМС.

Рисунок 11.2 – Укрупненная схема технологического процесса изготовления гибридно-пленочных ИМС.